Advertisements
Advertisements
Question
यदि एक समचतुर्भुज की एक भुजा 10 cm और एक विकर्ण 16 cm है, तो उस समचतुर्भुज का क्षेत्रफल 96 cm2 है।
Options
सत्य
असत्य
Solution
यह कथन सत्य है।
स्पष्टीकरण -
समचतुर्भुज का क्षेत्रफल ज्ञात करने के लिए, हम इसे दो त्रिभुजों में विभाजित करते हैं।
चूँकि एक समचतुर्भुज की सभी भुजाएँ बराबर होती हैं, हमारे पास एक त्रिभुज होता है।
a = 10, b = 10, c = 16
`s = (a + b + c)/2`
⇒ `s = (10 + 10 + 16)/2 = 36/2 = 18`
क्षेत्रफल (Δ) = `sqrt(s(s - a)(s - b)(s - c))`
⇒ क्षेत्रफल (Δ) = `sqrt(18(18 - 10)(18 - 10)(18 - 16))`
⇒ क्षेत्रफल (Δ) = `sqrt(18 xx 8 xx 8 xx 2)`
⇒ क्षेत्रफल (Δ) = 48 cm2
चूँकि दूसरे त्रिभुज की भुजाएँ भी समान हैं, इसलिए उनके क्षेत्रफल भी बराबर होंगे।
क्षेत्रफल (समचतुर्भुज) = क्षेत्रफल (Δ) + क्षेत्रफल (Δ)
⇒ क्षेत्रफल (समचतुर्भुज) = 48 + 48 = 96 cm2
APPEARS IN
RELATED QUESTIONS
एक यातायात संकेत बोर्ड पर 'आगे स्कूल है’ लिखा है और यह भुजा ‘a‘ वाले एक समबाहु त्रिभुज के आकार का है। हीरोन के सूत्र का प्रयोग करके इस बोर्ड का क्षेत्रफल ज्ञात कीजिए। यदि संकेत बोर्ड का परिमाप 180 cm है, तो इसका क्षेत्रफल क्या होगा?
किसी फ्लाईओवर (Flyover) की त्रिभुजाकार दीवार को विज्ञापनों के लिए प्रयोग किया जाता है। दीवार की भुजाओं की लंबाइयाँ 122 m, 22 m और 120 m हैं (देखिए आकृति)। इस विज्ञापन से प्रति वर्ष ₹ 5000 प्रति m2 की प्राप्ति होती है। एक कंपनी ने एक दीवार को विज्ञापन देने के लिए 3 महीने के लिए किराए पर लिया। उसने कुल कितना किराया दिया?
किसी पार्क में एक फिसल पट्टी (Slide) बनी हुई है। इसकी पार्श्वीय दीवारों (Side Walls) में से एक दीवार पर किसी रंग से पेंट किया गया है और उस पर ‘‘पार्क को हरा-भरा और साफ़ रखिए” लिखा हुआ है। (देखिए आकृति)। यदि इस दीवार की विमाएँ 15 m, 11 m और 6 m हैं, तो रंग से पेंट हुए भाग का क्षेत्रफल ज्ञात कीजिए।
एक समद्विबाहु त्रिभुज का परिमाप 30 cm है और उसकी बराबर भुजाएँ 12 cm लंबाई की हैं। इस त्रिभुज का क्षेत्रफल ज्ञात कीजिए।
दो विभिन्न रंगों के कपड़ों के 10 त्रिभुजाकार टुकड़ों की सिलाई करके एक छाता बनाया गया है (देखिए आकृति) प्रत्येक टुकड़े के माप 20 सेमी, 50 सेमी और 50 सेमी हैं। छाते में प्रत्येक रंग का कितना कपड़ा लगा है?
क्षेत्रफल `9sqrt(3)` cm2 वाले एक समबाहु त्रिभुज की प्रत्येक भुजा की लंबाई है
एक त्रिभुज की भुजाएँ 35 cm, 54 cm और 61 cm की हैं। इसके सबसे लंबे शीर्षलंब की लंबाई है
एक समबाहु त्रिभुज का क्षेत्रफल `20sqrt(3)` cm2 है, जिसकी प्रत्येक भुजा 8 cm है।
भुजा a वाले एक समषड्भुज का क्षेत्रफल भुजा a वाले पाँच समबाहु त्रिभुजों के क्षेत्रफलों के योग के बराबर होता है।
एक त्रिभुजाकार मैदान जिसकी भुजाएँ 51 m, 37 m और 20 m हैं को 3 रु. प्रति m2 की दर से समतल कराने का व्यय 918 रु है।