हिंदी

यदि एक समचतुर्भुज की एक भुजा 10 cm और एक विकर्ण 16 cm है, तो उस समचतुर्भुज का क्षेत्रफल 96 cm2 है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि एक समचतुर्भुज की एक भुजा 10 cm और एक विकर्ण 16 cm है, तो उस समचतुर्भुज का क्षेत्रफल 96 cm2 है। 

विकल्प

  • सत्य

  • असत्य

MCQ
सत्य या असत्य

उत्तर

यह कथन सत्य है।

स्पष्टीकरण -

समचतुर्भुज का क्षेत्रफल ज्ञात करने के लिए, हम इसे दो त्रिभुजों में विभाजित करते हैं।

चूँकि एक समचतुर्भुज की सभी भुजाएँ बराबर होती हैं, हमारे पास एक त्रिभुज होता है।

a = 10, b = 10, c = 16

`s = (a + b + c)/2`

⇒ `s = (10 + 10 + 16)/2 = 36/2 = 18`

क्षेत्रफल (Δ) = `sqrt(s(s - a)(s - b)(s - c))`

⇒ क्षेत्रफल (Δ) = `sqrt(18(18 - 10)(18 - 10)(18 - 16))`

⇒ क्षेत्रफल (Δ) = `sqrt(18 xx 8 xx 8 xx 2)`

⇒ क्षेत्रफल (Δ) = 48 cm2

चूँकि दूसरे त्रिभुज की भुजाएँ भी समान हैं, इसलिए उनके क्षेत्रफल भी बराबर होंगे।

क्षेत्रफल (समचतुर्भुज) = क्षेत्रफल (Δ) + क्षेत्रफल (Δ)

⇒ क्षेत्रफल (समचतुर्भुज) = 48 + 48 = 96 cm

shaalaa.com
त्रिभुज का क्षेत्रफल - हीरोन के सूत्र द्वारा
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: हीरोन का सूत्र - प्रश्नावली 12.2 [पृष्ठ ११६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 9
अध्याय 12 हीरोन का सूत्र
प्रश्नावली 12.2 | Q 5. | पृष्ठ ११६

संबंधित प्रश्न

एक त्रिभुज की भुजाओं का अनुपात 12 : 17 : 25 है और उसका परिमाप 540 cm है। इस त्रिभुज का क्षेत्रफल ज्ञात कीजिए।


आधार 2 cm और बराबर भुजाओं में से एक भुजा 4 cm वाले समद्विबाहु त्रिभुज का क्षेत्रफल है


एक त्रिभुज ABC का क्षेत्रफल 8 cm2 है, जिसमें AB = AC = 4 cm है तथा ∠A = 90° है।


एक समांतर चतुर्भुज का आधार और संगत शीर्षलंब क्रमश : 10 cm और 3.5 cm हैं। उस समांतर चतुर्भुज का क्षेत्रफल 30 cm2 है।


भुजा a वाले एक समषड्भुज का क्षेत्रफल भुजा a वाले पाँच समबाहु त्रिभुजों के क्षेत्रफलों के योग के बराबर होता है।


एक त्रिभुजाकार मैदान जिसकी भुजाएँ 51 m, 37 m और 20 m हैं को 3 रु. प्रति m2 की दर से समतल कराने का व्यय 918 रु है।


एक समबाहु त्रिभुज के अभ्यंतर में स्थित किसी बिंदु से तीनों भुजाओं पर लंब डाले जाते हैं। इन लंबों की लंबाई 14 cm, 10 cm और 6 cm हैं। इस त्रिभुज का क्षेत्रफल ज्ञात कीजिए।


आकृति में दिए हुए समांतर चतुर्भुज का क्षेत्रफल ज्ञात कीजिए। साथ ही, शीर्ष A से भुजा DC पर शीर्षलंब की लंबाई ज्ञात कीजिए।


एक त्रिभुजाकार खेत का परिमाप 420 m है तथा इसकी भुजाओं का अनुपात 6 : 7 : 8 है। इस खेत का क्षेत्रफल ज्ञात कीजिए।


निम्नलिखित आकृति में, ∆ABC की भुजाओं में AB = 7.5 cm, AC = 6.5 cm और BC = 7 cm है। आधार BC पर एक समांतर चतुर्भुज DBCE की रचना की जाती है, जो क्षेत्रफल में ∆ABC के बराबर है। इस समांतर चतुर्भुज की ऊँचाई DF ज्ञात कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×