Advertisements
Advertisements
Question
Draw a sketch of a pair of similar triangles. Label them. Show their corresponding angles by the same signs. Show the lengths of corresponding sides by numbers in proportion.
Solution
The pair of similar triangles is given below:
Here, ΔABD ∼ ΔEFG.
Then, the corresponding angles are
∠A = ∠E
∠B = ∠F
∠D = ∠G
Also, the corresponding sides are in proportion.
∴ `"AB"/"EF" = "BD"/"FG" = "AD"/"EG"`
∴ `4/28 = 5/35 = 6/42 = 1/7`
Hence, the corresponding sides and corresponding angles are labelled.
APPEARS IN
RELATED QUESTIONS
ΔDEF ~ ΔMNK. If DE = 5, MN = 6, then find the value of `"A(ΔDEF)"/"A(ΔMNK)"`
In adjoining figure, seg PS ⊥ seg RQ, seg QT ⊥ seg PR. If RQ = 6, PS = 6 and PR = 12, then Find QT.
In the following figure, AP ⊥ BC, AD || BC, then find A(∆ABC) : A(∆BCD).
Select the correct alternative answer and write it.
The ratio of corresponding sides of similar triangles is 5 : 7, then what is
the ratio of their areas ?
(A)25 : 49 (B) 49 : 25 (C) 5 : 7 (D) 7 : 5
In the given figure, CB ⊥ AB, DA ⊥ AB.
if BC = 4, AD = 8 then `(A(Δ ABC))/(A(Δ ADB))` find.
Δ ABC ∼ Δ PQR. If A(Δ ABC)=25, A(ΔPQR)=16, find AB : PQ.
(A) 25:16
(B) 4:5
(C) 16:25
(D) 5:4
In the adjoining figure,
PQ ⊥ BC, AD ⊥ BC,
PQ = 4, AD = 6
Write down the following ratios.
(i)`(A(ΔPQB))/(A(ΔADB))`
(ii)`(A(ΔPBC))/(A(ΔABC))`
Prove that an equilateral triangle is equiangular.
If ΔXYZ ~ ΔLMN, write the corresponding angles of the two triangles and also write the ratios of corresponding sides.
In Δ XYZ, XY = 4 cm, YZ = 6 cm, XZ = 5 cm, If ΔXYZ ~ ΔPQR and PQ = 8 cm then find the lengths of remaining sides of ΔPQR.