English

Draw a Neat Labelled Circuit Diagram of Experimental Arrangement for Study of Photoelectric Effect - Physics

Advertisements
Advertisements

Question

Draw a neat labelled circuit diagram of experimental arrangement for study of photoelectric effect.

Solution

Experimental arrangement for study of photoelectric effect.

S : monochromatic source

E : emitter electrode

C : collector electrode

G : evacuated glass tube

W : quartz window

μA : microammeter

Rh : rheostat

V : voltmeter

B : Battery

shaalaa.com
  Is there an error in this question or solution?
2014-2015 (October)

APPEARS IN

RELATED QUESTIONS

The photoelectric work function for a metal surface is 2.3 eV. If the light of wavelength 6800A is incident on the surface of metal, find threshold frequency and incident frequency. Will there be an emission of photoelectrons or not?

[Velocity of light c = 3 x 108 m/s,

Planck’s constant, h = 6.63 * 10-34 Js ]


Write three characteristic features in photoelectric effect that cannot be explained on the basis of wave theory of light, but can be explained only using Einstein's equation.


The photoelectric work function for a metal is 4.2 eV. If  the stopping potential is 3V, find the threshold wavelength and maximum kinetic energy of emitted electrons. 

(Velocity of light in air = 3 x 108m/s,
Planck's constant = 6·63 x10-34 J -s,
Charg.e ori electron = 1·6 x 10 -19 C)


Light of intensity ‘I’ and frequency ‘v’ is incident on a photosensitive surface and causes photoelectric emission. What will be the effect on anode current when (i) the intensity of light is gradually increased. In each case, all other factors remain the same. Explain, giving justification in each case.


Light of intensity ‘I’ and frequency ‘v’ is incident on a photosensitive surface and causes photoelectric emission. What will be the effect on anode current when (ii) the frequency of incident radiation is increased. In each case, all other factors remain the same. Explain, giving justification in each case.


Light of intensity ‘I’ and frequency ‘v’ is incident on a photosensitive surface and causes photoelectric emission. What will be the effect on anode current when the anode potential is increased? In each case, all other factors remain the same. Explain, giving justification in each case.


Two monochromatic beams, one red and the other blue, have the same intensity. In which case (i) the number of photons per unit area per second is larger, (ii) the maximum kinetic energy of the photoelectrons is more? Justify your answer.


Draw a plot showing the variation of photoelectric current versus the intensity of incident radiation on a given photosensitive surface.


The work functions for potassium and caesium are 2.25 eV and 2.14 eV respectively. Is the photoelectric effect possible for either of them if the incident wavelength is 5180 Å?

[Given : Planck’s constant = 6.63 x 10–34 J.s.;
Velocity of light = 3 x 108 m/s; 1 eV = 1.6 x 10–19 J]


In an experiment of the photoelectric effect, the graph of maximum kinetic energy EK of the emitted photoelectrons versus the frequency v of the incident light is a straight line AB shown in Figure 6 below:

Find:

1) Threshold frequency of the metal

2) The work function of the metal.

3) Stopping potential for the photoelectrons emitted by the light of frequency `v = 30 xx 10^14 Hz`


A photosensitive surface emits photoelectrons when red light falls on it. Will the surface emit photoelectrons when blue light is incident on it? Give reason. 


Draw a plot showing the variation of photoelectric current with collector potential for different frequencies but same intensity of incident radiation ?


Use Einstein's photoelectric equation to explain the observations from this graph ?


What change will you observe if intensity of incident radiation is changed but the frequency remains the same?


A beam of monochromatic radiation is incident on a photosensitive surface. Answer the following question giving reason :

Does the kinetic energy of the emitted electrons depend on the intensity of incident radiation?


In photoelectric effect, why should the photoelectric current increase as the intensity of monochromatic radiation incident on a photosensitive surface is increased? Explain.


What is photoelectri effect ? Defin (i) Stopping potential (ii) Photoelectric work function. 


Calculate the momentum of a photon of energy 6 x I 0-19 J. 


Two metals A and B have work functions 4 eV and 6 eV respectively. Which metal has a lower threshold wavelength for photoelectric effect?


State how will you use this graph to detennine the value of Planck's constant.


If the frequency of the incident radiation is increased from 4 × 1015 Hz to 8 × 1015 Hz, by how much will the stopping potential for a given photosensitive surface go up?


Photoelectric effect is possible ______.


The phenomenon of photoelectric emission was observed by ______.


Consider an electron in front of metallic surface at a distance d (treated as an infinite plane surface). Assume the force of attraction by the plate is given as `1/4 q^2/(4πε_0d^2)`. Calculate work in taking the charge to an infinite distance from the plate. Taking d = 0.1 nm, find the work done in electron volts. [Such a force law is not valid for d < 0.1nm].


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×