Advertisements
Advertisements
Question
दर्शाइए कि एक चतुर्भुज ABCD में, AB + BC + CD + DA > AC + BD होता है।
Solution
प्रश्न में दिया गया - एक चतुर्भुज ABCD है।
सिद्ध करना है कि AB + BC + CD + DA > AC + BD
प्रमाण - त्रिभुज ABC में,
AB + BC > AC ...(i) [त्रिभुज की किन्हीं दो भुजाओं की लंबाई का योग तीसरी भुजा से अधिक होना चाहिए]
त्रिभुज BCD में,
BC + CD > BD ...(ii) [त्रिभुज की किन्हीं दो भुजाओं की लंबाई का योग तीसरी भुजा से बड़ा होना चाहिए]
त्रिकोण CDA में,
CD + DA > AC ...(iii) [त्रिभुज की किन्हीं दो भुजाओं की लंबाई का योग तीसरी भुजा से अधिक होना चाहिए]
इसी प्रकार, त्रिभुज DAB में,
AD + AB > BD ...(iv) [त्रिभुज की किन्हीं दो भुजाओं की लंबाई का योग तीसरी भुजा से बड़ा होना चाहिए]
अब, समीकरण (i), (ii), (iii) और (iv) जोड़ने पर, हम पाते हैं।
AB + BC + BC + CD + CD + DA + AD + AB > AC + BD + AC + BD
2AB + 2BC + 2CD > 2AC + 2BD
2(AB + BC + CD + DA) > 2(AC + BD)
AB + BC + CD + DA > AC + BD
अतः सिद्ध हुआ।
APPEARS IN
RELATED QUESTIONS
एक रेखाखंड AB पर AD और BC दो बराबर लंब रेखाखंड हैं (देखिए आकृति)। दशाईए कि CD, रेखाखंड AB को समद्विभाजित करता है।
त्रिभुजों ABC और PQR में, ∠A = ∠Q और ∠B = ∠R है। ∆PQR की कौन सी भुजा ∆ABC की भुजा AB के बराबर होनी चाहिए कि दोनों त्रिभुज सर्वांगसम हों? अपने उत्तर के लिए कारण दीजिए।
“यदि किसी त्रिभुज की दो भुजाएँ और एक कोण दूसरे त्रिभुज की दो भुजाओं और एक कोण के बराबर हों, तो दोनों त्रिभुज अवश्य ही सर्वांगसम होने चाहिए।” क्या यह कथन सत्य है? क्यों?
क्या भुजाओं की लंबाइयाँ 4 cm, 3 cm और 7 cm लेकर किसी त्रिभुज की रचना की जा सकती है? अपने उत्तर के लिए कारण दीजिए।
AD किसी त्रिभुज ABC की एक माध्यिका है। क्या यह कहना सत्य है कि AB + BC + CA > 2AD है? अपने उत्तर के लिए कारण दीजिए।
∆PQR की भुजा QR पर S कोई बिंदु स्थित है। दर्शाइए कि PQ + QR + RP > 2PS है।
AB = AC वाले एक ∆ABC की भुजा, AC पर D कोई बिंदु स्थित है। दर्शाइए कि CD < BD है।
O एक वर्ग ABCD के अभ्यंतर में स्थित बिंदु इस प्रकार है कि OAB एक समबाहु त्रिभुज है। सिद्ध कीजिए कि ∆OCD एक समद्विबाहु त्रिभुज है।
ABC और DBC एक ही आधार BC पर स्थित दो त्रिभुज इस प्रकार हैं कि बिंदु A और D आधार BC के विपरीत ओर स्थित हैं, AB = AC और DB = DC है। दर्शाइए कि AD रेखाखंड BC का लंब समद्विभाजक है।
ABCD एक चतुर्भुज है, जिसमें AB = AD और CB = CD है। सिद्ध कीजिए कि AC, BD का लंब समद्विभाजक है।