Advertisements
Advertisements
Question
O एक वर्ग ABCD के अभ्यंतर में स्थित बिंदु इस प्रकार है कि OAB एक समबाहु त्रिभुज है। सिद्ध कीजिए कि ∆OCD एक समद्विबाहु त्रिभुज है।
Solution
दिया गया है - वर्ग ABCD के अभ्यंतर में O एक बिंदु इस प्रकार है कि ΔOAB एक समबाहु त्रिभुज है।
रचना - OC और OD को मिलाइए।
दर्शाना है - ΔOCD एक समद्विबाहु त्रिभुज है।
उपपत्ति - चूँकि, AOB एक समबाहु त्रिभुज है।
∴ ∠OAB = ∠OBA = 60° ...(i)
साथ ही, ∠DAB = ∠CBA = 90° ...(ii) [वर्ग का प्रत्येक कोण 90° है] [∵ ABCD एक वर्ग है।]
समीकरण (i) को समीकरण (ii) से घटाने पर, हम पाते हैं।
∠DAB – ∠OAB = ∠CBA – ∠OBA = 90° – 60°
यानी ∠DAO = ∠CBO = 30°
ΔAOD और ΔBOC में,
AO = BO ...[दिया गया है।] [समबाहु त्रिभुज की सभी भुजाएँ बराबर होती हैं।]
∠DAO = ∠CBO ...[ऊपर सिद्ध]
और AD = BC ...[एक वर्ग की भुजाएँ बराबर होती हैं।]
∴ ΔAOD ≅ ΔBOC ...[SAS सर्वांगसमता नियम द्वारा]
अत:, OD = OC ...[CPCT द्वारा]
ΔCOD में,
OC = OD
अत:, ΔCOD एक समद्विबाहु त्रिभुज है।
अतः सिद्ध हुआ।
APPEARS IN
RELATED QUESTIONS
एक रेखाखंड AB पर AD और BC दो बराबर लंब रेखाखंड हैं (देखिए आकृति)। दशाईए कि CD, रेखाखंड AB को समद्विभाजित करता है।
∆ABC ≅ ∆RPQ दिया हुआ है। क्या यह कहना सत्य है कि BC = QR है? क्यों?
क्या भुजाओं की लंबाइयाँ 9 cm, 7 cm और 17 cm लेकर किसी त्रिभुज की रचना की जा सकती है? अपने उत्तर के लिए कारण दीजिए।
AB = AC वाले एक समद्विबाहु त्रिभुज के कोणों B और C के समद्विभाजक परस्पर O पर प्रतिच्छेद करते हैं। BO को एक बिंदु M तक बढ़ाया जाता है। सिद्ध कीजिए कि ∠MOC = ∠ABC है।
AB = AC वाले एक समद्विबाहु त्रिभुज के कोणों B और C के समद्विभाजक परस्पर O पर प्रतिच्छेद करते हैं। दर्शाइए कि ∠ABC के आसन्न एक बहिष्कोण ∠BOC के बराबर हैं।
ABC एक समकोण त्रिभुज है, जिसमें AB = AC है। ∠A का समद्विभाजक BC से D पर मिलता है। सिद्ध कीजिए कि BC = 2AD है।
ABC एक समद्विबाहु त्रिभुज है, जिसमें AC = BC है। AD और BE क्रमश : BC और AC पर शीर्षलंब हैं। सिद्ध कीजिए कि AE = BD है।
एक त्रिभुज ABC में, D भुजा AC का मध्य-बिंदु है ताकि BD = `1/2` AC है। दर्शाइए कि ∠ABC एक समकोण है।
एक समकोण त्रिभुज में, सिद्ध कीजिए कि कर्ण के मध्य-बिंदु को उसके सम्मुख शीर्ष से मिलाने वाला रेखाखंड कर्ण का आधा होता है।
ABCD एक चतुर्भुज इस प्रकार है कि विकर्ण AC दोनों कोणों A और C का समद्विभाजक है। सिद्ध कीजिए कि AB = AD और CB = CD है।