English

AB = AC वाले एक समद्विबाहु त्रिभुज के कोणों B और C के समद्विभाजक परस्पर O पर प्रतिच्छेद करते हैं। दर्शाइए कि ∠ABC के आसन्न एक बहिष्कोण ∠BOC के बराबर हैं। - Mathematics (गणित)

Advertisements
Advertisements

Question

AB = AC वाले एक समद्विबाहु त्रिभुज के कोणों B और C के समद्विभाजक परस्पर O पर प्रतिच्छेद करते हैं। दर्शाइए कि ∠ABC के आसन्न एक बहिष्कोण ∠BOC के बराबर हैं।

Sum

Solution


दिया गया है - ΔABC एक समद्विबाहु त्रिभुज है जिसमें AB = AC, BO और CO क्रमश: ∠ABC और ∠ACB के समद्विभाजक हैं जो O पर प्रतिच्छेद करते हैं।

दिखाएँ के लिए  - ∠DBA = ∠BOC

उत्पादन - रेखा CB का उत्पादन D पर किया गया था।

उपपत्ति - ΔABC में, AB = AC  ...[दिया गया है।]

∠ACB = ∠ABC  ...[समान भुजाओं के सम्मुख कोण बराबर होते हैं।]

⇒ `1/2 ∠ACB = 1/2 ∠ABC`   ...[दोनों पक्षों को 2 से भाग देने पर]

⇒ ∠OCB = ∠OBC   ...(i)  [∵ BO और CO, ∠ABC और ∠ACB के समद्विभाजक हैं।]

∆BOC में, ∠OBC + ∠OCB + ∠BOC = 180°  ...[त्रिभुज के कोण योग गुण द्वारा]

⇒ ∠OBC + ∠OBC + ∠BOC = 180°  ...[समीकरण (i) से]

⇒ 2∠OBC + ∠BOC = 180°

⇒ ∠ABC + ∠BOC = 180°   ...[∵ BO, ∠ABC का समद्विभाजक है।]

⇒ 180° – ∠DBA + ∠BOC = 180°   ...[∵ DBC एक सरल रेखा है।]

⇒ – ∠DBA + ∠BOC = 0

⇒ ∠DBA = ∠BOC

shaalaa.com
त्रिभुजों की सर्वांगसमता के लिए कुछ और कसौटियाँ
  Is there an error in this question or solution?
Chapter 7: त्रिभुज - प्रश्नावली 7.3 [Page 68]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 9
Chapter 7 त्रिभुज
प्रश्नावली 7.3 | Q 10. | Page 68

RELATED QUESTIONS

एक रेखाखंड AB पर AD और BC दो बराबर लंब रेखाखंड हैं (देखिए आकृति)। दशाईए कि CD, रेखाखंड AB को समद्विभाजित करता है।


l और m दो समांतर रेखाएँ हैं जिन्हें समांतर रेखाओं p और q का एक अन्य युग्म प्रतिच्छेदित करता है (देखिए आकृति) दर्शाइए कि: △ABC ≌ △CDA है।


रेखा l कोण A को समद्विभाजित करती है और B रेखा l पर स्थित कोई बिंदु है। BP और BQ कोण A की भुजाओं पर B से डाले गए लंब हैं। (देखिए आकृति) दर्शाइए कि:

  1. △APB ≌ △AQB
  2. BP = BQ है, अर्थात् बिंदु B कोण की भुजाओं से समदूरस्थ है।


आकृति में, AC = AE, AB = AD और ∠BAD = ∠EAC है। दर्शाइए कि BC = DE है।


AB एक रेखाखंड है और P इसका मध्य-बिंदु है। D और E रेखाखंड AB के एक ही ओर स्थित दो बिंदु इस प्रकार हैं कि ∠BAD = ∠ABE और ∠EPA = ∠DPB है। (देखिए आकृति)। दर्शाइए कि:

  1. △DAP ≌ △EBP
  2. AD = BE


यदि ∆PQR ≅ ∆EDF है, तो क्या यह कहना सत्य है कि PR = EF है? अपने उत्तर के लिए कारण दीजिए।


AB = AC वाला ABC एक समद्विबाहु त्रिभुज है तथा D भुजा BC पर इस प्रकार स्थित है कि AD ⊥ BC है। (आकृति)। ∠BAD = ∠CAD सिद्ध करने के लिए, किसी विद्यार्थी ने निम्नलिखित प्रक्रिया अपनाई :


∆ABD और ∆ACD में,

AB = AC (दिया है)

∠B = ∠C  (क्योंकि AB = AC)

तथा ∠ADB = ∠ADC (प्रत्येक 90°)

अतः, ∆ABD ≅ ∆ACD (AAS)

इसलिए, ∠BAD = ∠CAD (CPCT)

उपरोक्त तर्कणों में क्या कमी है?

[संकेत : याद कीजिए कि जब AB = AC हो, तो ∠B = ∠C को कैसे सिद्ध किया जाता है।]


ABC एक समकोण त्रिभुज है, जिसमें AB = AC है। ∠A का समद्विभाजक BC से D पर मिलता है। सिद्ध कीजिए कि BC = 2AD है।


दर्शाइए कि एक चतुर्भुज ABCD में, AB + BC + CD + DA > AC + BD होता है।


एक समलंब ABCD की क्रमशः समांतर भुजाओं AB और DC के मध्य-बिंदुओं M और N को मिलाने वाला रेखाखंड दोनों भुजाओं AB और DC पर लंब है। सिद्ध कीजिए कि AD = BC है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×