Advertisements
Advertisements
प्रश्न
AB = AC वाले एक समद्विबाहु त्रिभुज के कोणों B और C के समद्विभाजक परस्पर O पर प्रतिच्छेद करते हैं। दर्शाइए कि ∠ABC के आसन्न एक बहिष्कोण ∠BOC के बराबर हैं।
उत्तर
दिया गया है - ΔABC एक समद्विबाहु त्रिभुज है जिसमें AB = AC, BO और CO क्रमश: ∠ABC और ∠ACB के समद्विभाजक हैं जो O पर प्रतिच्छेद करते हैं।
दिखाएँ के लिए - ∠DBA = ∠BOC
उत्पादन - रेखा CB का उत्पादन D पर किया गया था।
उपपत्ति - ΔABC में, AB = AC ...[दिया गया है।]
∠ACB = ∠ABC ...[समान भुजाओं के सम्मुख कोण बराबर होते हैं।]
⇒ `1/2 ∠ACB = 1/2 ∠ABC` ...[दोनों पक्षों को 2 से भाग देने पर]
⇒ ∠OCB = ∠OBC ...(i) [∵ BO और CO, ∠ABC और ∠ACB के समद्विभाजक हैं।]
∆BOC में, ∠OBC + ∠OCB + ∠BOC = 180° ...[त्रिभुज के कोण योग गुण द्वारा]
⇒ ∠OBC + ∠OBC + ∠BOC = 180° ...[समीकरण (i) से]
⇒ 2∠OBC + ∠BOC = 180°
⇒ ∠ABC + ∠BOC = 180° ...[∵ BO, ∠ABC का समद्विभाजक है।]
⇒ 180° – ∠DBA + ∠BOC = 180° ...[∵ DBC एक सरल रेखा है।]
⇒ – ∠DBA + ∠BOC = 0
⇒ ∠DBA = ∠BOC
APPEARS IN
संबंधित प्रश्न
रेखा l कोण A को समद्विभाजित करती है और B रेखा l पर स्थित कोई बिंदु है। BP और BQ कोण A की भुजाओं पर B से डाले गए लंब हैं। (देखिए आकृति) दर्शाइए कि:
- △APB ≌ △AQB
- BP = BQ है, अर्थात् बिंदु B कोण की भुजाओं से समदूरस्थ है।
- ∆ABM ≅ ∆PQN
- ∆ABC ≅ ∆PQR
∆ABC ≅ ∆RPQ दिया हुआ है। क्या यह कहना सत्य है कि BC = QR है? क्यों?
यदि ∆PQR ≅ ∆EDF है, तो क्या यह कहना सत्य है कि PR = EF है? अपने उत्तर के लिए कारण दीजिए।
क्या भुजाओं की लंबाइयाँ 9 cm, 7 cm और 17 cm लेकर किसी त्रिभुज की रचना की जा सकती है? अपने उत्तर के लिए कारण दीजिए।
क्या भुजाओं की लंबाइयाँ 8 cm, 7 cm और 4 cm लेकर किसी त्रिभुज की रचना की जा सकती है? अपने उत्तर के लिए कारण दीजिए।
AB = AC वाले एक ∆ABC की भुजा, AC पर D कोई बिंदु स्थित है। दर्शाइए कि CD < BD है।
AB = AC वाले एक समद्विबाहु त्रिभुज के कोणों B और C के समद्विभाजक परस्पर O पर प्रतिच्छेद करते हैं। BO को एक बिंदु M तक बढ़ाया जाता है। सिद्ध कीजिए कि ∠MOC = ∠ABC है।
दर्शाइए कि एक चतुर्भुज ABCD में, AB + BC + CD + DA > AC + BD होता है।
एक समकोण त्रिभुज में, सिद्ध कीजिए कि कर्ण के मध्य-बिंदु को उसके सम्मुख शीर्ष से मिलाने वाला रेखाखंड कर्ण का आधा होता है।