हिंदी

AB = AC वाले एक ∆ABC की भुजा, AC पर D कोई बिंदु स्थित है। दर्शाइए कि CD < BD है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

AB = AC वाले एक ∆ABC की भुजा, AC पर D कोई बिंदु स्थित है। दर्शाइए कि CD < BD है।

योग

उत्तर

त्रिभुज ABC में दिया गया है, D भुजा AC पर कोई बिंदु इस प्रकार है कि AB = AC है।


सिद्ध करना है कि CD < BD या BD > CD

सिद्ध करने के लिए - AC = AB  ...[दिया गया है।]

∠ABC = ∠ACB   ...(i) [समान भुजाओं के सम्मुख कोण बराबर होते हैं।]

त्रिभुज ABC और त्रिभुज DBC में,

∠ABC > ∠DBC  ...[∠DBC, ∠B का आंतरिक कोण है।]

∠ACB > ∠DBC  ...[समीकरण (i) से]

BD > CD  ...[बड़े कोण की सम्मुख भुजा बड़ी होती है।]

CD < BD

shaalaa.com
त्रिभुजों की सर्वांगसमता के लिए कुछ और कसौटियाँ
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: त्रिभुज - प्रश्नावली 7.3 [पृष्ठ ६७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 9
अध्याय 7 त्रिभुज
प्रश्नावली 7.3 | Q 7. | पृष्ठ ६७

संबंधित प्रश्न

AD एक समद्विबाहु त्रिभुज ABC का एक शीर्षलम्ब है, जिसमें AB = AC है। दर्शाइए कि:

  1. AD रेखाखंड BC को समद्विभाजित करता है।
  2. AD कोण A को समद्विभाजित करता है।

क्या भुजाओं की लंबाइयाँ 4 cm, 3 cm और 7 cm लेकर किसी त्रिभुज की रचना की जा सकती है? अपने उत्तर के लिए कारण दीजिए।


∆ABC ≅ ∆RPQ दिया हुआ है। क्या यह कहना सत्य है कि BC = QR है? क्यों?


यदि ∆PQR ≅ ∆EDF है, तो क्या यह कहना सत्य है कि PR = EF है? अपने उत्तर के लिए कारण दीजिए।


∆PQR में, ∠P = 70° और ∠R = 30° है। इस त्रिभुज की कौन-सी भुजा सबसे लंबी है? अपने उत्तर के लिए कारण दीजिए। 


क्या भुजाओं की लंबाइयाँ 9 cm, 7 cm और 17 cm लेकर किसी त्रिभुज की रचना की जा सकती है? अपने उत्तर के लिए कारण दीजिए।


∆PQR की भुजा QR पर S कोई बिंदु स्थित है। दर्शाइए कि PQ + QR + RP > 2PS है।


ABC एक समद्विबाहु त्रिभुज है, जिसमें AC = BC है। AD और BE क्रमश : BC और AC पर शीर्षलंब हैं। सिद्ध कीजिए कि AE = BD है।


एक समकोण त्रिभुज में, सिद्ध कीजिए कि कर्ण के मध्य-बिंदु को उसके सम्मुख शीर्ष से मिलाने वाला रेखाखंड कर्ण का आधा होता है।


ABC एक समकोण त्रिभुज है, जिसमें AB = AC है तथा ∠C का समद्विभाजक भुजा AB को D पर प्रतिच्छेद करता है। सिद्ध कीजिए कि AC + AD = BC है। 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×