हिंदी

ABC एक समकोण त्रिभुज है, जिसमें AB = AC है तथा ∠C का समद्विभाजक भुजा AB को D पर प्रतिच्छेद करता है। सिद्ध कीजिए कि AC + AD = BC है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

ABC एक समकोण त्रिभुज है, जिसमें AB = AC है तथा ∠C का समद्विभाजक भुजा AB को D पर प्रतिच्छेद करता है। सिद्ध कीजिए कि AC + AD = BC है। 

योग

उत्तर

दिया गया है - समकोण ∆ABC में, AB = AC और CD, ∠C का समद्विभाजक है।

रचना - DE ⊥ BC खींचिए।

सिद्ध करना है - AC + AD = BC

उपपत्ति - समकोण △ABC में, AB = AC और BC एक काल्पनिक है।  ...[दिया गया है।]

∴ ∠A = 90°

ΔDAC और ΔDEC में, ∠A = ∠3 = 90°


∠1 = ∠2   ...[दिया गया है, CD, ∠C का समद्विभाजक है।]

DC = DC   ...[सामान्य पक्ष]

∴ ΔDAC ≅ ΔDEC   ...[AAS सर्वांगसमता नियम द्वारा]

⇒ DA = DE   [CPCT द्वारा] ...(i)

और AC = EC  ...(ii)

ΔABC में AB = AC है।

∠C = ∠B  [समान भुजाओं के सम्मुख कोण बराबर होते हैं।]  ...(iii)

पुनः, ∠ABC में, ∠A + ∠B + ∠C = 180° ...[कोणों द्वारा त्रिभुज के गुणों का योग]

⇒ 90° + ∠B + ∠B = 180°   ...[समीकरण (iii) से]

⇒ 2∠B = 180° – 90°

⇒ 2∠B = 90°

⇒ ∠B = 45°

∠BED में, ∠5 = 180° – (∠B + ∠4)  ...[त्रिभुज के कोण योग गुण द्वारा]

= 180° – (45° + 90°)

= 180° – 135°

= 45°

∴ ∠B = ∠5

⇒ DE = BE  [∵ बराबर कोणों की सम्मुख भुजाएँ बराबर होती हैं।]  ...(iv)

समीकरण (i) और (iv) से,

DA = DE = BE  ...(v)

∵ BC = CE + EB

= CA + DA   ...[समीकरण (ii) और (v) से]]

∴ AD + AC = BC  

अतः सिद्ध हुआ।

shaalaa.com
त्रिभुजों की सर्वांगसमता के लिए कुछ और कसौटियाँ
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: त्रिभुज - प्रश्नावली 7.4 [पृष्ठ ७१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 9
अध्याय 7 त्रिभुज
प्रश्नावली 7.4 | Q 18. | पृष्ठ ७१

संबंधित प्रश्न

ABC एक समकोण त्रिभुज है, जिसमें ∠A = 90° और AB = AC है। ∠B और ∠C ज्ञात कीजिए।


AD एक समद्विबाहु त्रिभुज ABC का एक शीर्षलम्ब है, जिसमें AB = AC है। दर्शाइए कि:

  1. AD रेखाखंड BC को समद्विभाजित करता है।
  2. AD कोण A को समद्विभाजित करता है।

“यदि किसी त्रिभुज की दो भुजाएँ और एक कोण दूसरे त्रिभुज की दो भुजाओं और एक कोण के बराबर हों, तो दोनों त्रिभुज अवश्य ही सर्वांगसम होने चाहिए।” क्या यह कथन सत्य है? क्यों?


यदि ∆PQR ≅ ∆EDF है, तो क्या यह कहना सत्य है कि PR = EF है? अपने उत्तर के लिए कारण दीजिए।


AD किसी त्रिभुज ABC की एक माध्यिका है। क्या यह कहना सत्य है कि AB + BC + CA > 2AD है? अपने उत्तर के लिए कारण दीजिए।


AB = AC वाले एक समद्विबाहु त्रिभुज के कोणों B और C के समद्विभाजक परस्पर O पर प्रतिच्छेद करते हैं। दर्शाइए कि ∠ABC के आसन्न एक बहिष्कोण ∠BOC के बराबर हैं।


एक समतल दर्पण LM के सम्मुख स्थित बिंदु A पर रखी किसी वस्तु का प्रतिबिम्ब एक प्रेक्षक D से बिंदु B पर देखता है, जैसा कि निम्नलिखित आकृति में दर्शाया गया है। सिद्ध कीजिए कि यह प्रतिबिम्ब दर्पण के पीछे उतनी ही दूरी पर है जितनी दूरी पर वह वस्तु दर्पण के सम्मुख है।

[संकेत : CN दर्पण पर अभिलंब है। साथ ही, आपतन कोण = परावर्तन कोण।]


दो रेखाएँ l और m बिंदु O पर प्रतिच्छेद करती हैं तथा P बिंदु O से होकर जाने वाली रेखा n पर स्थित कोई बिंदु इस प्रकार है कि P रेखाओं l और m से समदूरस्थ है। सिद्ध कीजिए कि n रेखाओं l और m के बीच बनने वाले कोण का समद्विभाजक है।


एक समलंब ABCD की क्रमशः समांतर भुजाओं AB और DC के मध्य-बिंदुओं M और N को मिलाने वाला रेखाखंड दोनों भुजाओं AB और DC पर लंब है। सिद्ध कीजिए कि AD = BC है।


ABCD एक चतुर्भुज इस प्रकार है कि विकर्ण AC दोनों कोणों A और C का समद्विभाजक है। सिद्ध कीजिए कि AB = AD और CB = CD है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×