English

ABC एक समकोण त्रिभुज है, जिसमें AB = AC है तथा ∠C का समद्विभाजक भुजा AB को D पर प्रतिच्छेद करता है। सिद्ध कीजिए कि AC + AD = BC है। - Mathematics (गणित)

Advertisements
Advertisements

Question

ABC एक समकोण त्रिभुज है, जिसमें AB = AC है तथा ∠C का समद्विभाजक भुजा AB को D पर प्रतिच्छेद करता है। सिद्ध कीजिए कि AC + AD = BC है। 

Sum

Solution

दिया गया है - समकोण ∆ABC में, AB = AC और CD, ∠C का समद्विभाजक है।

रचना - DE ⊥ BC खींचिए।

सिद्ध करना है - AC + AD = BC

उपपत्ति - समकोण △ABC में, AB = AC और BC एक काल्पनिक है।  ...[दिया गया है।]

∴ ∠A = 90°

ΔDAC और ΔDEC में, ∠A = ∠3 = 90°


∠1 = ∠2   ...[दिया गया है, CD, ∠C का समद्विभाजक है।]

DC = DC   ...[सामान्य पक्ष]

∴ ΔDAC ≅ ΔDEC   ...[AAS सर्वांगसमता नियम द्वारा]

⇒ DA = DE   [CPCT द्वारा] ...(i)

और AC = EC  ...(ii)

ΔABC में AB = AC है।

∠C = ∠B  [समान भुजाओं के सम्मुख कोण बराबर होते हैं।]  ...(iii)

पुनः, ∠ABC में, ∠A + ∠B + ∠C = 180° ...[कोणों द्वारा त्रिभुज के गुणों का योग]

⇒ 90° + ∠B + ∠B = 180°   ...[समीकरण (iii) से]

⇒ 2∠B = 180° – 90°

⇒ 2∠B = 90°

⇒ ∠B = 45°

∠BED में, ∠5 = 180° – (∠B + ∠4)  ...[त्रिभुज के कोण योग गुण द्वारा]

= 180° – (45° + 90°)

= 180° – 135°

= 45°

∴ ∠B = ∠5

⇒ DE = BE  [∵ बराबर कोणों की सम्मुख भुजाएँ बराबर होती हैं।]  ...(iv)

समीकरण (i) और (iv) से,

DA = DE = BE  ...(v)

∵ BC = CE + EB

= CA + DA   ...[समीकरण (ii) और (v) से]]

∴ AD + AC = BC  

अतः सिद्ध हुआ।

shaalaa.com
त्रिभुजों की सर्वांगसमता के लिए कुछ और कसौटियाँ
  Is there an error in this question or solution?
Chapter 7: त्रिभुज - प्रश्नावली 7.4 [Page 71]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 9
Chapter 7 त्रिभुज
प्रश्नावली 7.4 | Q 18. | Page 71

RELATED QUESTIONS

एक रेखाखंड AB पर AD और BC दो बराबर लंब रेखाखंड हैं (देखिए आकृति)। दशाईए कि CD, रेखाखंड AB को समद्विभाजित करता है।


AB एक रेखाखंड है और P इसका मध्य-बिंदु है। D और E रेखाखंड AB के एक ही ओर स्थित दो बिंदु इस प्रकार हैं कि ∠BAD = ∠ABE और ∠EPA = ∠DPB है। (देखिए आकृति)। दर्शाइए कि:

  1. △DAP ≌ △EBP
  2. AD = BE


△ABC और △DBC एक ही आधार BC पर बने दो समद्विबाहु त्रिभुज इस प्रकार हैं कि A और D भुजा BC के एक ही ओर स्थित हैं (देखिए आकृति)। यदि AD बढ़ाने पर BC को P पर प्रतिच्छेद करे, तो दर्शाइए कि:

  1. △ABD ≌ △ACD
  2. △ABP ≌ △ACP
  3. AP कोण A और कोण D दोनों को समद्विभाजित करता है।
  4. AP रेखाखंड BC का लम्ब समद्विभाजक है।


∆ABC ≅ ∆RPQ दिया हुआ है। क्या यह कहना सत्य है कि BC = QR है? क्यों?


∆PQR में, ∠P = 70° और ∠R = 30° है। इस त्रिभुज की कौन-सी भुजा सबसे लंबी है? अपने उत्तर के लिए कारण दीजिए। 


क्या भुजाओं की लंबाइयाँ 8 cm, 7 cm और 4 cm लेकर किसी त्रिभुज की रचना की जा सकती है? अपने उत्तर के लिए कारण दीजिए।


∆PQR की भुजा QR पर S कोई बिंदु स्थित है। दर्शाइए कि PQ + QR + RP > 2PS है।


दर्शाइए कि एक चतुर्भुज ABCD में, AB + BC + CD + DA > AC + BD होता है।


AB और CD क्रमश : एक चतुर्भुज ABCD की सबसे छोटी और सबसे बड़ी भुजाएं हैं। ∠B और ∠D में से निश्चित कीजिए कि कौन बड़ा हैं।


सिद्ध कीजिए कि एक समबाहु त्रिभुज को छोड़कर, किसी त्रिभुज में सबसे लंबी भुजा का सम्मुख कोण एक समकोण के `2/3` भाग से बड़ा होता हैं।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×