English

△ABC और △DBC एक ही आधार BC पर बने दो समद्विबाहु त्रिभुज इस प्रकार हैं कि A और D भुजा BC के एक ही ओर स्थित हैं (देखिए आकृति)। यदि AD बढ़ाने पर BC को P पर प्रतिच्छेद करे, तो दर्शाइए कि: △ABD ≌ △ACD - Mathematics (गणित)

Advertisements
Advertisements

Question

△ABC और △DBC एक ही आधार BC पर बने दो समद्विबाहु त्रिभुज इस प्रकार हैं कि A और D भुजा BC के एक ही ओर स्थित हैं (देखिए आकृति)। यदि AD बढ़ाने पर BC को P पर प्रतिच्छेद करे, तो दर्शाइए कि:

  1. △ABD ≌ △ACD
  2. △ABP ≌ △ACP
  3. AP कोण A और कोण D दोनों को समद्विभाजित करता है।
  4. AP रेखाखंड BC का लम्ब समद्विभाजक है।

Sum

Solution

(i) ΔABD और ΔACD में,

AB = AC        ...(दिया गया है)

BD = CD       ...(दिया गया है)

AD = AD       ..(उभयनिष्ठ)

∴ ΔABD ≅ ΔACD           ...(SSS सर्वांगसमता नियम द्वारा)

⇒ ∠BAD = ∠CAD          ...(सर्वांगसम त्रिभुजों के संगत भागों द्वारा)

⇒ ∠BAP = ∠CAP         …(1)

(ii) ΔABP और ΔACP में,

AB = AC                ...(दिया गया है)

∠BAP = ∠CAP        ...[समीकरण (1) से]

AP = AP                 ...(उभयनिष्ठ)

∴ ΔABP ≅ ΔACP     ...(SSS सर्वांगसमता नियम द्वारा)

⇒ BP = CP             ...(सर्वांगसम त्रिभुजों के संगत भागों द्वारा)   …(2)

(iii) समीकरण (1) से,

∠BAP = ∠CAP

अतः AP, ∠A को समद्विभाजित करता है।

ΔBDP और ΔCDP में,

BD = CD                   ...(दिया गया है)

DP = DP                   ...(उभयनिष्ठ)

BP = CP                 ...[समीकरण (2) से]

∴ ΔBDP ≅ ΔCDP        ...(SSS सर्वांगसमता नियम द्वारा)

⇒ ∠BDP = ∠CDP        ...(सर्वांगसम त्रिभुजों के संगत भागों द्वारा)    …(3)

अतः AP, ∠D को समद्विभाजित करता है।

(iv) ΔBDP ≅ ΔCDP

∴ ∠BPD = ∠CPD       ...(सर्वांगसम त्रिभुजों के संगत भागों द्वारा)   …(4)

∠BPD + ∠CPD = 180°     ...(रैखिक युग्म कोण)

∠BPD + ∠BPD = 180°

2∠BPD = 180°     ...[समीकरण (4) से]

∠BPD = 90°       …(5)

समीकरण (2) और (5) से यह कहा जा सकता है कि AP, BC का लम्ब समद्विभाजक है।

shaalaa.com
त्रिभुजों की सर्वांगसमता के लिए कुछ और कसौटियाँ
  Is there an error in this question or solution?
Chapter 7: त्रिभुज - प्रश्नावली 7.3 [Page 154]

APPEARS IN

NCERT Mathematics [Hindi] Class 9
Chapter 7 त्रिभुज
प्रश्नावली 7.3 | Q 1. | Page 154

RELATED QUESTIONS

AD एक समद्विबाहु त्रिभुज ABC का एक शीर्षलम्ब है, जिसमें AB = AC है। दर्शाइए कि:

  1. AD रेखाखंड BC को समद्विभाजित करता है।
  2. AD कोण A को समद्विभाजित करता है।

ABC एक समद्विबाहु त्रिभुज है जिसमें AB = AC है। AP ⊥ BC खींच कर दर्शाइए कि ∠B = ∠C है।


त्रिभुजों ABC और PQR में, ∠A = ∠Q और ∠B = ∠R है। ∆PQR की कौन सी भुजा ∆ABC की भुजा AB के बराबर होनी चाहिए कि दोनों त्रिभुज सर्वांगसम हों? अपने उत्तर के लिए कारण दीजिए।


“यदि किसी त्रिभुज की दो भुजाएँ और एक कोण दूसरे त्रिभुज की दो भुजाओं और एक कोण के बराबर हों, तो दोनों त्रिभुज अवश्य ही सर्वांगसम होने चाहिए।” क्या यह कथन सत्य है? क्यों?


यदि ∆PQR ≅ ∆EDF है, तो क्या यह कहना सत्य है कि PR = EF है? अपने उत्तर के लिए कारण दीजिए।


AB = AC वाले एक ∆ABC की भुजा, AC पर D कोई बिंदु स्थित है। दर्शाइए कि CD < BD है।


एक समतल दर्पण LM के सम्मुख स्थित बिंदु A पर रखी किसी वस्तु का प्रतिबिम्ब एक प्रेक्षक D से बिंदु B पर देखता है, जैसा कि निम्नलिखित आकृति में दर्शाया गया है। सिद्ध कीजिए कि यह प्रतिबिम्ब दर्पण के पीछे उतनी ही दूरी पर है जितनी दूरी पर वह वस्तु दर्पण के सम्मुख है।

[संकेत : CN दर्पण पर अभिलंब है। साथ ही, आपतन कोण = परावर्तन कोण।]


ABCD एक चतुर्भुज है, जिसमें AB = BC और AD = CD है। दर्शाइए कि BD दोनों कोणों ABC और ADC को समद्विभाजित करता है।


एक त्रिभुज ABC में, D भुजा AC का मध्य-बिंदु है ताकि BD = `1/2` AC है। दर्शाइए कि ∠ABC एक समकोण है।


एक समकोण त्रिभुज में, सिद्ध कीजिए कि कर्ण के मध्य-बिंदु को उसके सम्मुख शीर्ष से मिलाने वाला रेखाखंड कर्ण का आधा होता है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×