English

AB एक रेखाखंड है और P इसका मध्य-बिंदु है। D और E रेखाखंड AB के एक ही ओर स्थित दो बिंदु इस प्रकार हैं कि ∠BAD = ∠ABE और ∠EPA = ∠DPB है। (देखिए आकृति)। दर्शाइए कि: i. △DAP ≌ △EBP ii. AD = BE - Mathematics (गणित)

Advertisements
Advertisements

Question

AB एक रेखाखंड है और P इसका मध्य-बिंदु है। D और E रेखाखंड AB के एक ही ओर स्थित दो बिंदु इस प्रकार हैं कि ∠BAD = ∠ABE और ∠EPA = ∠DPB है। (देखिए आकृति)। दर्शाइए कि:

  1. △DAP ≌ △EBP
  2. AD = BE

Sum

Solution

P, AB का मध्य-बिंदु है।

∴ AP =BP

∠EPA = ∠DPB       ...[दिया गया है]

दोनों पक्षों में ∠EPD जोड़ने पर, हमें प्राप्त होता है:

∠EPA + ∠EPD = ∠DPB + ∠EPD

⇒ ∠APD = ∠BPE

i. अब, △DAP और △EBP में, हमारे पास है

∠PAD = ∠PBE        ...[∵ ∠BAD = ∠ABE]

AP = BP                 ...[ऊपर सिद्ध किया गया है।]

∠DPA = ∠EPB       ...[ऊपर सिद्ध किया गया है।]

∴ △DAP ≌ △EBP     ...[ASA अनुरूपता द्वारा]

ii. चूँकि, △DAP ≌ △EBP

⇒ AD = BE        ...[सर्वांगसम त्रिभुजों के संगत भागों द्वारा]

shaalaa.com
त्रिभुजों की सर्वांगसमता के लिए कुछ और कसौटियाँ
  Is there an error in this question or solution?
Chapter 7: त्रिभुज - प्रश्नावली 7.1 [Page 144]

APPEARS IN

NCERT Mathematics [Hindi] Class 9
Chapter 7 त्रिभुज
प्रश्नावली 7.1 | Q 7. | Page 144

RELATED QUESTIONS

रेखा l कोण A को समद्विभाजित करती है और B रेखा l पर स्थित कोई बिंदु है। BP और BQ कोण A की भुजाओं पर B से डाले गए लंब हैं। (देखिए आकृति) दर्शाइए कि:

  1. △APB ≌ △AQB
  2. BP = BQ है, अर्थात् बिंदु B कोण की भुजाओं से समदूरस्थ है।


△ABC और △DBC एक ही आधार BC पर बने दो समद्विबाहु त्रिभुज इस प्रकार हैं कि A और D भुजा BC के एक ही ओर स्थित हैं (देखिए आकृति)। यदि AD बढ़ाने पर BC को P पर प्रतिच्छेद करे, तो दर्शाइए कि:

  1. △ABD ≌ △ACD
  2. △ABP ≌ △ACP
  3. AP कोण A और कोण D दोनों को समद्विभाजित करता है।
  4. AP रेखाखंड BC का लम्ब समद्विभाजक है।


ABC एक समद्विबाहु त्रिभुज है जिसमें AB = AC है। AP ⊥ BC खींच कर दर्शाइए कि ∠B = ∠C है।


त्रिभुजों ABC और PQR में, ∠A = ∠Q और ∠B = ∠R है। ∆PQR की कौन-सी भुजा ∆ABC की भुजा BC के बराबर होनी चाहिए कि दोनों त्रिभुज सर्वांगसम हों? अपने उत्तर के लिए कारण दीजिए।


“यदि किसी त्रिभुज की दो भुजाएँ और एक कोण दूसरे त्रिभुज की दो भुजाओं और एक कोण के बराबर हों, तो दोनों त्रिभुज अवश्य ही सर्वांगसम होने चाहिए।” क्या यह कथन सत्य है? क्यों?


क्या भुजाओं की लंबाइयाँ 9 cm, 7 cm और 17 cm लेकर किसी त्रिभुज की रचना की जा सकती है? अपने उत्तर के लिए कारण दीजिए।


AB = AC वाले एक समद्विबाहु त्रिभुज के कोणों B और C के समद्विभाजक परस्पर O पर प्रतिच्छेद करते हैं। दर्शाइए कि ∠ABC के आसन्न एक बहिष्कोण ∠BOC के बराबर हैं।


ABC एक समद्विबाहु त्रिभुज है, जिसमें AC = BC है। AD और BE क्रमश : BC और AC पर शीर्षलंब हैं। सिद्ध कीजिए कि AE = BD है।


दर्शाइए कि एक चतुर्भुज ABCD में, AB + BC + CD + DA < 2(BD + AC) होता है।


ABCD एक चतुर्भुज है, जिसमें AB = AD और CB = CD है। सिद्ध कीजिए कि AC, BD का लंब समद्विभाजक है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×