Advertisements
Advertisements
Question
ABCD एक चतुर्भुज है, जिसमें AB = AD और CB = CD है। सिद्ध कीजिए कि AC, BD का लंब समद्विभाजक है।
Solution
दिया गया है - चतुर्भुज ABCD में, AB = AD और CB = CD है।
रचना - AC और BD को मिलाइए।
सिद्ध करना है - AC, BD का लम्ब समद्विभाजक है।
प्रमाण - ΔABC और ΔADC में,
AB = AD ...[दिया गया है।]
BC = CD ...[दिया गया है।]
और AC = AC ...[उभयनिष्ठ पक्ष]
∴ ΔABC ≅ ΔADC ...[SSS सर्वांगसमता नियम द्वारा]
⇒ ∠1 = ∠2 ...[CPCT द्वारा]
अब, ∆AOB और ΔAOD में,
AB = AD ...[दिया गया है।]
⇒ ∠1 = ∠2 ...[ऊपर सिद्ध]
और AO = AO ...[उभयनिष्ठ पक्ष]
∴ ΔAOB ≅ ΔAOD ...[SAS सर्वांगसमता नियम द्वारा]
⇒ BO = DO ...[CPCT द्वारा]
और ∠3 = ∠4 [CPCT द्वारा] ...(i)
लेकिन ∠3 + ∠4 = 180° ...[रैखिक युग्म अभिगृहीत]
∠3 + ∠3 = 180° ...[समीकरण (i) से]
⇒ 2∠3 = 180°
⇒ ∠3 = `(180^circ)/2`
∴ ∠3 = 90°
अर्थात्, AC, BD का लम्ब समद्विभाजक है।
APPEARS IN
RELATED QUESTIONS
रेखा l कोण A को समद्विभाजित करती है और B रेखा l पर स्थित कोई बिंदु है। BP और BQ कोण A की भुजाओं पर B से डाले गए लंब हैं। (देखिए आकृति) दर्शाइए कि:
- △APB ≌ △AQB
- BP = BQ है, अर्थात् बिंदु B कोण की भुजाओं से समदूरस्थ है।
ABC एक समकोण त्रिभुज है, जिसमें ∠A = 90° और AB = AC है। ∠B और ∠C ज्ञात कीजिए।
△ABC और △DBC एक ही आधार BC पर बने दो समद्विबाहु त्रिभुज इस प्रकार हैं कि A और D भुजा BC के एक ही ओर स्थित हैं (देखिए आकृति)। यदि AD बढ़ाने पर BC को P पर प्रतिच्छेद करे, तो दर्शाइए कि:
- △ABD ≌ △ACD
- △ABP ≌ △ACP
- AP कोण A और कोण D दोनों को समद्विभाजित करता है।
- AP रेखाखंड BC का लम्ब समद्विभाजक है।
- ∆ABM ≅ ∆PQN
- ∆ABC ≅ ∆PQR
यदि ∆PQR ≅ ∆EDF है, तो क्या यह कहना सत्य है कि PR = EF है? अपने उत्तर के लिए कारण दीजिए।
निम्नलिखित आकृति में, l || m है तथा M रेखाखंड AB का मध्य-बिंदु है। दर्शाइए कि M किसी भी रेखाखंड CD का मध्य-बिंदु है जिसके अंत:बिंदु क्रमश : l और m पर स्थित है।
ABCD एक चतुर्भुज है, जिसमें AB = BC और AD = CD है। दर्शाइए कि BD दोनों कोणों ABC और ADC को समद्विभाजित करता है।
दर्शाइए कि एक चतुर्भुज ABCD में, AB + BC + CD + DA < 2(BD + AC) होता है।
AB और CD क्रमश : एक चतुर्भुज ABCD की सबसे छोटी और सबसे बड़ी भुजाएं हैं। ∠B और ∠D में से निश्चित कीजिए कि कौन बड़ा हैं।