Advertisements
Advertisements
Question
एक समकोण त्रिभुज ABC में, जिसमें कोण C समकोण है, M कर्ण AB का मध्य-बिंदु है। C को M से मिलाकर D तक इस प्रकार बढ़ाया गया है कि DM = CM है। बिंदु D को बिंदु B से मिला दिया जाता है (देखिए आकृति)। दर्शाइए कि:
- △AMC ≌ △BMD
- ∠DBC एक समकोण है।
- △DBC ≌ △ACB
- CM = `1/2` AB
Solution
चूँकि M, AB का मध्य-बिंदु है।
∴ BM = AM
i. ΔAMC और ΔBMD में, हमारे पास है
CM = DM ...[दिया गया है]
∠AMC = ∠BMD ...[शीर्षाभिमुख कोण]
AM = BM ...[ऊपर सिद्ध किया गया है।]
∴ ΔAMC ≅ ΔBMD ...[SAS सर्वांगसमता से]
ii. चूँकि ΔAMC ≅ ΔBMD
∠MAC = ∠MBD ...[सर्वांगसम त्रिभुजों के संगत भागों द्वारा]
लेकिन वे एकांतर अंत: कोणों की जोड़ी बनाते हैं।
∴ AC ‖ DB
अब, BC एक तिर्यक रेखा है जो समांतर रेखाओं AC और DB को प्रतिच्छेद करती है।
∴ ∠BCA + ∠DBC = 180° ...[सह-अंत: कोण]
लेकिन ∠BCA = 90° ...[ΔABC, C पर समकोण है]
∴ 90° + ∠DBC = 180°
⇒ ∠DBC = 90°
iii. फिर से, ΔAMC ≅ ΔBMD ...[ऊपर सिद्ध किया गया है।]
∴ AC = BD ...[सर्वांगसम त्रिभुजों के संगत भागों द्वारा]
अब, ΔDBC और ΔACB में, हमारे पास है
BD = CA ...[ऊपर सिद्ध किया गया है।]
∠DBC = ∠ACB ...[प्रत्येक 90°]
BC = CB ...[उभयनिष्ठ]
∴ ΔDBC ≅ ΔACB ...[SAS सर्वांगसमता द्वारा]
iv. चूँकि, ΔDBC ≅ ΔACB
⇒ DC = AB ...[सर्वांगसम त्रिभुजों के संगत भागों द्वारा]
But DM = CM ...[दिया गया है]
∴ CM = `1/2` DC = `1/2` AB
⇒ CM = `1/2` AB
APPEARS IN
RELATED QUESTIONS
△ABC और △DBC एक ही आधार BC पर बने दो समद्विबाहु त्रिभुज इस प्रकार हैं कि A और D भुजा BC के एक ही ओर स्थित हैं (देखिए आकृति)। यदि AD बढ़ाने पर BC को P पर प्रतिच्छेद करे, तो दर्शाइए कि:
- △ABD ≌ △ACD
- △ABP ≌ △ACP
- AP कोण A और कोण D दोनों को समद्विभाजित करता है।
- AP रेखाखंड BC का लम्ब समद्विभाजक है।
- ∆ABM ≅ ∆PQN
- ∆ABC ≅ ∆PQR
त्रिभुजों ABC और PQR में, ∠A = ∠Q और ∠B = ∠R है। ∆PQR की कौन सी भुजा ∆ABC की भुजा AB के बराबर होनी चाहिए कि दोनों त्रिभुज सर्वांगसम हों? अपने उत्तर के लिए कारण दीजिए।
∆PQR में, ∠P = 70° और ∠R = 30° है। इस त्रिभुज की कौन-सी भुजा सबसे लंबी है? अपने उत्तर के लिए कारण दीजिए।
M किसी त्रिभुज ABC की भुजा BC पर स्थित एक बिंदु ऐसा है कि AM कोण BAC का समद्विभाजक है। क्या यह कहना सत्य है कि त्रिभुज का परिमाप 2 AM से अधिक है? अपने उत्तर के लिए कारण दीजिए।
क्या भुजाओं की लंबाइयाँ 8 cm, 7 cm और 4 cm लेकर किसी त्रिभुज की रचना की जा सकती है? अपने उत्तर के लिए कारण दीजिए।
एक समबाहु त्रिभुज के सभी कोण ज्ञात कीजिए।
ABCD एक चतुर्भुज है, जिसमें AB = BC और AD = CD है। दर्शाइए कि BD दोनों कोणों ABC और ADC को समद्विभाजित करता है।
ABC एक समकोण त्रिभुज है, जिसमें AB = AC है। ∠A का समद्विभाजक BC से D पर मिलता है। सिद्ध कीजिए कि BC = 2AD है।
सिद्ध कीजिए कि एक त्रिभुज की किन्हीं दो भुजाओं का योग तीसरी भुजा की संगत माध्यिका के दोगुने से बड़ा होता हैं।