English

एक समकोण त्रिभुज ABC में, जिसमें कोण C समकोण है, M कर्ण AB का मध्य-बिंदु है। C को M से मिलाकर D तक इस प्रकार बढ़ाया गया है कि DM = CM है। बिंदु D को बिंदु B से मिला दिया जाता है - Mathematics (गणित)

Advertisements
Advertisements

Question

एक समकोण त्रिभुज ABC में, जिसमें कोण C समकोण है, M कर्ण AB का मध्य-बिंदु है। C को M से मिलाकर D तक इस प्रकार बढ़ाया गया है कि DM = CM है। बिंदु D को बिंदु B से मिला दिया जाता है (देखिए आकृति)। दर्शाइए कि:

  1. △AMC ≌ △BMD
  2. ∠DBC एक समकोण है।
  3. △DBC ≌ △ACB
  4. CM = `1/2` AB

Sum

Solution

चूँकि M, AB का मध्य-बिंदु है।

∴ BM = AM

i. ΔAMC और ΔBMD में, हमारे पास है

CM = DM                 ...[दिया गया है]

∠AMC = ∠BMD        ...[शीर्षाभिमुख कोण]

AM = BM                 ...[ऊपर सिद्ध किया गया है।]

∴ ΔAMC ≅ ΔBMD    ...[SAS सर्वांगसमता से]

ii. चूँकि ΔAMC ≅ ΔBMD

∠MAC = ∠MBD         ...[सर्वांगसम त्रिभुजों के संगत भागों द्वारा]

लेकिन वे एकांतर अंत: कोणों की जोड़ी बनाते हैं।

∴ AC ‖ DB

अब, BC एक तिर्यक रेखा है जो समांतर रेखाओं AC और DB को प्रतिच्छेद करती है।

∴ ∠BCA + ∠DBC = 180°        ...[सह-अंत: कोण]

लेकिन ∠BCA = 90°          ...[ΔABC, C पर समकोण है]

∴ 90° + ∠DBC = 180°

⇒ ∠DBC = 90°

iii. फिर से, ΔAMC ≅ ΔBMD         ...[ऊपर सिद्ध किया गया है।]

∴ AC = BD                            ...[सर्वांगसम त्रिभुजों के संगत भागों द्वारा]

अब, ΔDBC और ΔACB में, हमारे पास है

BD = CA                         ...[ऊपर सिद्ध किया गया है।]

∠DBC = ∠ACB                 ...[प्रत्येक 90°]

BC = CB                           ...[उभयनिष्ठ]

∴ ΔDBC ≅ ΔACB             ...[SAS सर्वांगसमता द्वारा]

iv. चूँकि, ΔDBC ≅ ΔACB

⇒ DC = AB              ...[सर्वांगसम त्रिभुजों के संगत भागों द्वारा]

But DM = CM          ...[दिया गया है]

∴ CM = `1/2` DC = `1/2` AB

⇒ CM = `1/2` AB

shaalaa.com
त्रिभुजों की सर्वांगसमता के लिए कुछ और कसौटियाँ
  Is there an error in this question or solution?
Chapter 7: त्रिभुज - प्रश्नावली 7.1 [Page 145]

APPEARS IN

NCERT Mathematics [Hindi] Class 9
Chapter 7 त्रिभुज
प्रश्नावली 7.1 | Q 8. | Page 145

RELATED QUESTIONS

△ABC और △DBC एक ही आधार BC पर बने दो समद्विबाहु त्रिभुज इस प्रकार हैं कि A और D भुजा BC के एक ही ओर स्थित हैं (देखिए आकृति)। यदि AD बढ़ाने पर BC को P पर प्रतिच्छेद करे, तो दर्शाइए कि:

  1. △ABD ≌ △ACD
  2. △ABP ≌ △ACP
  3. AP कोण A और कोण D दोनों को समद्विभाजित करता है।
  4. AP रेखाखंड BC का लम्ब समद्विभाजक है।


एक त्रिभुज ABC की दो भुजाएँ AB और BC तथा माध्यिका AM क्रमशः एक दूसरे त्रिभुज की भुजाओं PQ और QR तथा माध्यिका PN के बराबर है (देखिए आकृति)। दर्शाइए कि:
  1. ∆ABM ≅ ∆PQN
  2. ∆ABC ≅ ∆PQR


त्रिभुजों ABC और PQR में, ∠A = ∠Q और ∠B = ∠R है। ∆PQR की कौन सी भुजा ∆ABC की भुजा AB के बराबर होनी चाहिए कि दोनों त्रिभुज सर्वांगसम हों? अपने उत्तर के लिए कारण दीजिए।


∆PQR में, ∠P = 70° और ∠R = 30° है। इस त्रिभुज की कौन-सी भुजा सबसे लंबी है? अपने उत्तर के लिए कारण दीजिए। 


M किसी त्रिभुज ABC की भुजा BC पर स्थित एक बिंदु ऐसा है कि AM कोण BAC का समद्विभाजक है। क्या यह कहना सत्य है कि त्रिभुज का परिमाप 2 AM से अधिक है? अपने उत्तर के लिए कारण दीजिए।


क्या भुजाओं की लंबाइयाँ 8 cm, 7 cm और 4 cm लेकर किसी त्रिभुज की रचना की जा सकती है? अपने उत्तर के लिए कारण दीजिए।


एक समबाहु त्रिभुज के सभी कोण ज्ञात कीजिए।


ABCD एक चतुर्भुज है, जिसमें AB = BC और AD = CD है। दर्शाइए कि BD दोनों कोणों ABC और ADC को समद्विभाजित करता है।


ABC एक समकोण त्रिभुज है, जिसमें AB = AC है। ∠A का समद्विभाजक BC से D पर मिलता है। सिद्ध कीजिए कि BC = 2AD है।


सिद्ध कीजिए कि एक त्रिभुज की किन्हीं दो भुजाओं का योग तीसरी भुजा की संगत माध्यिका के दोगुने से बड़ा होता हैं।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×