English

एक समद्विबाहु त्रिभुज ABC में जिसमें AB = AC है, ∠B और ∠C के समद्विभाजक परस्पर बिंदु O पर प्रतिच्छेद करते हैं। A और O को जोड़िए। दर्शाइए कि: i. OB = OC ii. AO कोण A को समद्विभाजित करता है। - Mathematics (गणित)

Advertisements
Advertisements

Question

एक समद्विबाहु त्रिभुज ABC में जिसमें AB = AC है, ∠B और ∠C के समद्विभाजक परस्पर बिंदु O पर प्रतिच्छेद करते हैं। A और O को जोड़िए। दर्शाइए कि:

  1. OB = OC
  2. AO कोण A को समद्विभाजित करता है।
Sum

Solution

(i) ABC एक समद्विबाहु त्रिभुज है जिसमें AB = AC

∠C = ∠B          ...[त्रिभुज में समान भुजाओं के सम्मुख कोण समान होते हैं।]

⇒ ∠OCA + ∠OCB = ∠OBA + ∠OBC

⇒ ∠OCB + ∠OCB = ∠OBC + ∠OBC

∵ OB, ∠B को समद्विभाजित करता है।

∴ ∠OBA = ∠OBC

और OC, ∠C को समद्विभाजित करता है।

∴ ∠OCA = ∠OCB

⇒ 2∠OCB = 2∠OBC

⇒ ∠OCB = ∠OBC

अब, △OBC में,

∠OCB = ∠OBC       ...[ऊपर सिद्ध किया है]

∴ OB = OC             ...[समान कोणों की सम्मुख भुजाएँ]

(ii) अब △AOB और △AOC में,

AB = AC           ...[दिया है]

∠OBA = ∠OCA

∠B = ∠C

BO, ∠B और CO, ∠C को समद्विभाजित करता है।

∠OBA = ∠OCA

OB = OC

∴ △AOB ≌ △AOC          ...[SAS सर्वांगसमता नियम से]

⇒ ∠OAB = ∠OAC          ...[सर्वांमसम त्रिभुजों के संगत भाग]

अतः AO, ∠A को समद्विभाजित करता है।

shaalaa.com
एक त्रिभुज के कुछ गुण
  Is there an error in this question or solution?
Chapter 7: त्रिभुज - प्रश्नावली 7.2 [Page 148]

APPEARS IN

NCERT Mathematics [Hindi] Class 9
Chapter 7 त्रिभुज
प्रश्नावली 7.2 | Q 1. | Page 148

RELATED QUESTIONS

△ABC में, AD भुजा BC का लम्ब समद्विभाजक है (देखिए आकृति)। दर्शाइए △ABC एक समद्विबाहु त्रिभुज है, जिसमें AB = AC है।


ABC एक समद्विबाहु त्रिभुज है, जिसमें बराबर भुजाओं AC और AB पर क्रमशः शीर्षलंब BE और CF खींचे गए हैं (देखिए आकृति)। दर्शाइए कि ये शीर्षलंब बराबर हैं।


ABC एक त्रिभुज है जिसमें AC और AB पर खींचे गए शीर्षलंब BE और CF बराबर हैं (देखिए आकृति)। दर्शाइए कि

  1. △ABE ≌ △ACF
  2. AB = AC, अर्थात् △ABC एक समद्विबाहु त्रिभुज है।


ABC और DBC समान आधार BC पर स्थित दो समद्विबाहु त्रिभुज हैं (देखिए आकृति)। दर्शाइए कि
∠ABD = ∠ACD है।


ABC एक समद्विबाहु त्रिभुज है, जिसमें AB = AC है। भुजा BA बिंदु D तक इस प्रकार बढ़ाई गई है कि AD = AB है (देखिए आकृति)। दर्शाइए कि ∠BCD एक समकोण है।


दर्शाइए कि किसी समबाहु त्रिभुज का प्रत्येक कोण 60° होता है।


D एक त्रिभुज ABC की भुजा BC पर एक बिंदु इस प्रकार स्थित है कि AD कोण BAC को समद्विभाजित करता है। तब, ______ 


त्रिभुजों ABC और DEF में, AB = FD तथा ∠A = ∠D है। दोनों त्रिभुज SAS अभिगृहीत से सर्वांगसम होंगे, यदि ______।


CDE एक वर्ग ABCD की भुजा CD पर बना एक समबाहु त्रिभुज है (आकृति)। दर्शाइए कि ∆ADE ≅ ∆BCE है।


एक ∆PSR की भुजा SR पर एक बिंदु Q इस प्रकार स्थित है कि PQ = PR है। सिद्ध कीजिए कि PS > PQ है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×