Advertisements
Advertisements
प्रश्न
ABC एक समद्विबाहु त्रिभुज है, जिसमें AC = BC है। AD और BE क्रमश : BC और AC पर शीर्षलंब हैं। सिद्ध कीजिए कि AE = BD है।
उत्तर
दिया गया है - ΔABC एक समद्विबाहु त्रिभुज है जिसमें AC = BC है।
साथ ही, AD और BE क्रमशः BC और AC भुजाओं पर दो शीर्षलंब हैं।
सिद्ध करना है - AE = BD
प्रमाण - ΔABC में,
AC = BC ...[दिया गया है।]
∠ABC = ∠CAB ...[समान भुजाओं के सम्मुख कोण बराबर होते हैं।]
अर्थात्, ∠ABD = ∠EAB ...(i)
ΔAEB और ΔBDA में,
∠AEB = ∠ADB = 90° ...[दिया गया है, AD ⊥ BC और BE ⊥ AC]
∠EAB = ∠ABD ...[समीकरण (i) से]
और AB = AB ...[उभयनिष्ठ भुजा]
∴ ΔAEB ≅ ΔBDA ...[AAS सर्वांगसमता नियम द्वारा]
⇒ AE = BD ...[CPCT द्वारा]
अतः सिद्ध हुआ।
APPEARS IN
संबंधित प्रश्न
रेखा l कोण A को समद्विभाजित करती है और B रेखा l पर स्थित कोई बिंदु है। BP और BQ कोण A की भुजाओं पर B से डाले गए लंब हैं। (देखिए आकृति) दर्शाइए कि:
- △APB ≌ △AQB
- BP = BQ है, अर्थात् बिंदु B कोण की भुजाओं से समदूरस्थ है।
आकृति में, AC = AE, AB = AD और ∠BAD = ∠EAC है। दर्शाइए कि BC = DE है।
AB एक रेखाखंड है और P इसका मध्य-बिंदु है। D और E रेखाखंड AB के एक ही ओर स्थित दो बिंदु इस प्रकार हैं कि ∠BAD = ∠ABE और ∠EPA = ∠DPB है। (देखिए आकृति)। दर्शाइए कि:
- △DAP ≌ △EBP
- AD = BE
- ∆ABM ≅ ∆PQN
- ∆ABC ≅ ∆PQR
त्रिभुजों ABC और PQR में, ∠A = ∠Q और ∠B = ∠R है। ∆PQR की कौन-सी भुजा ∆ABC की भुजा BC के बराबर होनी चाहिए कि दोनों त्रिभुज सर्वांगसम हों? अपने उत्तर के लिए कारण दीजिए।
यदि ∆PQR ≅ ∆EDF है, तो क्या यह कहना सत्य है कि PR = EF है? अपने उत्तर के लिए कारण दीजिए।
AD किसी त्रिभुज ABC की एक माध्यिका है। क्या यह कहना सत्य है कि AB + BC + CA > 2AD है? अपने उत्तर के लिए कारण दीजिए।
क्या भुजाओं की लंबाइयाँ 9 cm, 7 cm और 17 cm लेकर किसी त्रिभुज की रचना की जा सकती है? अपने उत्तर के लिए कारण दीजिए।
ABCD एक चतुर्भुज है, जिसमें AB = BC और AD = CD है। दर्शाइए कि BD दोनों कोणों ABC और ADC को समद्विभाजित करता है।
ABC एक समकोण त्रिभुज है, जिसमें AB = AC है। ∠A का समद्विभाजक BC से D पर मिलता है। सिद्ध कीजिए कि BC = 2AD है।