हिंदी

रेखा l कोण A को समद्विभाजित करती है और B रेखा l पर स्थित कोई बिंदु है। BP और BQ कोण A की भुजाओं पर B से डाले गए लंब हैं। (देखिए आकृति) दर्शाइए कि: △APB ≌ △AQB - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

रेखा l कोण A को समद्विभाजित करती है और B रेखा l पर स्थित कोई बिंदु है। BP और BQ कोण A की भुजाओं पर B से डाले गए लंब हैं। (देखिए आकृति) दर्शाइए कि:

  1. △APB ≌ △AQB
  2. BP = BQ है, अर्थात् बिंदु B कोण की भुजाओं से समदूरस्थ है।

योग

उत्तर

हम पाते हैं कि, l, ∠QAP का समद्विभाजित है।

∴ ∠QAB = ∠PAB

और ∠Q = ∠P     ...[प्रत्येक 90°]

⇒ ∠ABQ = ∠ABP          ...[△ के कोण योग गुण द्वारा]

i. अब, △APB और △AQB में, हमारे पास है

∠ABP = ∠ABQ       ...[ऊपर सिद्ध किया गया है।]

AB = BA                 ...[उभयनिष्ठ]

∠PAB ≅ ∠QAB        ...[दिया गया है]

△APB ≅ △AQB      ...[ASA सर्वांगसमता द्वारा]

ii. चूँकि, △APB ≅ △AQB

⇒ BP =  BQ           ...[सर्वांगसम त्रिभुजों के संगत भागों द्वारा]

यानी, [AP से B की लंब दूरी] = [AQ से B की लंब दूरी]

इस प्रकार, बिंदु B, ∠A की भुजाओं से समदूरस्थ है।

shaalaa.com
त्रिभुजों की सर्वांगसमता के लिए कुछ और कसौटियाँ
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: त्रिभुज - प्रश्नावली 7.1 [पृष्ठ १४४]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 9
अध्याय 7 त्रिभुज
प्रश्नावली 7.1 | Q 5. | पृष्ठ १४४

संबंधित प्रश्न

एक रेखाखंड AB पर AD और BC दो बराबर लंब रेखाखंड हैं (देखिए आकृति)। दशाईए कि CD, रेखाखंड AB को समद्विभाजित करता है।


BE और CF एक त्रिभुज ABC के दो बराबर शीर्षलम्ब हैं। RHS सर्वांगसमता नियम का प्रयोग करके सिद्ध कीजिए कि ΔABC एक समद्विबाहु त्रिभुज है।

ABC एक समद्विबाहु त्रिभुज है जिसमें AB = AC है। AP ⊥ BC खींच कर दर्शाइए कि ∠B = ∠C है।


क्या भुजाओं की लंबाइयाँ 9 cm, 7 cm और 17 cm लेकर किसी त्रिभुज की रचना की जा सकती है? अपने उत्तर के लिए कारण दीजिए।


AB = AC वाले एक ∆ABC की भुजा, AC पर D कोई बिंदु स्थित है। दर्शाइए कि CD < BD है।


ABCD एक चतुर्भुज है, जिसमें AB = BC और AD = CD है। दर्शाइए कि BD दोनों कोणों ABC और ADC को समद्विभाजित करता है।


ABC एक समकोण त्रिभुज है, जिसमें AB = AC है। ∠A का समद्विभाजक BC से D पर मिलता है। सिद्ध कीजिए कि BC = 2AD है।


ABC एक समद्विबाहु त्रिभुज है, जिसमें AC = BC है। AD और BE क्रमश : BC और AC पर शीर्षलंब हैं। सिद्ध कीजिए कि AE = BD है।


ABCD एक चतुर्भुज इस प्रकार है कि विकर्ण AC दोनों कोणों A और C का समद्विभाजक है। सिद्ध कीजिए कि AB = AD और CB = CD है।


सिद्ध कीजिए कि एक समबाहु त्रिभुज को छोड़कर, किसी त्रिभुज में सबसे लंबी भुजा का सम्मुख कोण एक समकोण के `2/3` भाग से बड़ा होता हैं।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×