हिंदी

सिद्ध कीजिए कि एक समबाहु त्रिभुज को छोड़कर, किसी त्रिभुज में सबसे लंबी भुजा का सम्मुख कोण एक समकोण के 23 भाग से बड़ा होता हैं। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

सिद्ध कीजिए कि एक समबाहु त्रिभुज को छोड़कर, किसी त्रिभुज में सबसे लंबी भुजा का सम्मुख कोण एक समकोण के `2/3` भाग से बड़ा होता हैं।

योग

उत्तर


विचार करें - ΔABC जिसमें BC सबसे लंबी भुजा है।

सिद्ध करना है - ∠A = `2/3` समकोण

उपपत्ति - ΔABC में, BC > AB  ...[कल्पना कीजिए कि BC सबसे बड़ी भुजा है।] 

⇒ ∠A > ∠C   ...(i) [सबसे लंबी भुजा के सम्मुख कोण सबसे बड़ा होता है।] 

और BC > AC

⇒ ∠A > ∠B   ...(ii) [सबसे लंबी भुजा के सम्मुख कोण सबसे बड़ा होता है।] 

समीकरण (i) और (ii) को जोड़ने पर, हम प्राप्त करते हैं।

2∠A > ∠B + ∠C

⇒ 2∠A + ∠A > ∠A + ∠B + ∠C   ...[दोनों पक्षों में ∠A जोड़ने पर] 

⇒ 3∠A > ∠A + ∠B + ∠C

⇒ 3∠A > 180°   ...[त्रिभुज के सभी कोणों का योग 180° होता है।]

⇒ ∠A > `2/3 xx 90^circ`

यानी, ∠A > समकोण का `2/3` 

अतः सिद्ध हुआ।

shaalaa.com
त्रिभुजों की सर्वांगसमता के लिए कुछ और कसौटियाँ
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: त्रिभुज - प्रश्नावली 7.4 [पृष्ठ ७१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 9
अध्याय 7 त्रिभुज
प्रश्नावली 7.4 | Q 20. | पृष्ठ ७१

संबंधित प्रश्न

l और m दो समांतर रेखाएँ हैं जिन्हें समांतर रेखाओं p और q का एक अन्य युग्म प्रतिच्छेदित करता है (देखिए आकृति) दर्शाइए कि: △ABC ≌ △CDA है।


आकृति में, AC = AE, AB = AD और ∠BAD = ∠EAC है। दर्शाइए कि BC = DE है।


एक त्रिभुज ABC की दो भुजाएँ AB और BC तथा माध्यिका AM क्रमशः एक दूसरे त्रिभुज की भुजाओं PQ और QR तथा माध्यिका PN के बराबर है (देखिए आकृति)। दर्शाइए कि:
  1. ∆ABM ≅ ∆PQN
  2. ∆ABC ≅ ∆PQR


ABC एक समद्विबाहु त्रिभुज है जिसमें AB = AC है। AP ⊥ BC खींच कर दर्शाइए कि ∠B = ∠C है।


त्रिभुजों ABC और PQR में, ∠A = ∠Q और ∠B = ∠R है। ∆PQR की कौन सी भुजा ∆ABC की भुजा AB के बराबर होनी चाहिए कि दोनों त्रिभुज सर्वांगसम हों? अपने उत्तर के लिए कारण दीजिए।


∆ABC ≅ ∆RPQ दिया हुआ है। क्या यह कहना सत्य है कि BC = QR है? क्यों?


AB = AC वाले एक ∆ABC की भुजा, AC पर D कोई बिंदु स्थित है। दर्शाइए कि CD < BD है।


एक समतल दर्पण LM के सम्मुख स्थित बिंदु A पर रखी किसी वस्तु का प्रतिबिम्ब एक प्रेक्षक D से बिंदु B पर देखता है, जैसा कि निम्नलिखित आकृति में दर्शाया गया है। सिद्ध कीजिए कि यह प्रतिबिम्ब दर्पण के पीछे उतनी ही दूरी पर है जितनी दूरी पर वह वस्तु दर्पण के सम्मुख है।

[संकेत : CN दर्पण पर अभिलंब है। साथ ही, आपतन कोण = परावर्तन कोण।]


एक समलंब ABCD की क्रमशः समांतर भुजाओं AB और DC के मध्य-बिंदुओं M और N को मिलाने वाला रेखाखंड दोनों भुजाओं AB और DC पर लंब है। सिद्ध कीजिए कि AD = BC है।


ABCD एक चतुर्भुज है, जिसमें AB = AD और CB = CD है। सिद्ध कीजिए कि AC, BD का लंब समद्विभाजक है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×