हिंदी

ABC और DBC एक ही आधार BC पर स्थित दो त्रिभुज इस प्रकार हैं कि बिंदु A और D आधार BC के विपरीत ओर स्थित हैं, AB = AC और DB = DC है। दर्शाइए कि AD रेखाखंड BC का लंब समद्विभाजक है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

ABC और DBC एक ही आधार BC पर स्थित दो त्रिभुज इस प्रकार हैं कि बिंदु A और D आधार BC के विपरीत ओर स्थित हैं, AB = AC और DB = DC है। दर्शाइए कि AD रेखाखंड BC का लंब समद्विभाजक है। 

योग

उत्तर

प्रश्न में दिया गया है, ABC और DBC एक ही आधार BC पर स्थित दो त्रिभुज इस प्रकार हैं कि A और D, BC के विपरीत भुजाओं पर स्थित हैं, AB = AC और DB = DC है।


यह सिद्ध करने के लिए कि AD, BC का लम्ब समद्विभाजक है, अर्थात OB = OC है।

उपपत्ति - त्रिभुज BAD और त्रिभुज CAD में,

AB = AC  ...[दिया गया है।]

BD = CD  ...[दिया गया है।]

AD = AD   ...[सामान्य पक्ष]

अब, सर्वांगसमता की SSS कसौटी से,

ΔBAD ≅ ΔCAD

इसलिए, ∠1 = ∠2   ...[CPCT]

अब, त्रिभुज BAO और त्रिभुज CAO में,

AB = AC   ...[दिया गया है।]

∠1 = ∠2   ...[ऊपर सिद्ध]

AO = AO   ...[सामान्य पक्ष]

इसलिए, सर्वांगसमता की SAS कसौटी से,

ΔBAO ≅ ΔCAO

चूंकि, BO = CO  ...[CPCT]

और ∠3 = ∠4  ...[CPCT]

∠3 + ∠4 = 180°   ...[रैखिक युग्म अभिगृहीत]

∠3 + ∠3 = 180°

2∠3 = 180°

∠3 = `(180^circ)/2`

∠3 = 90°

इसलिए, AD, BC के समद्विभाजक के लंबवत है।

अतः सिद्ध हुआ।

shaalaa.com
त्रिभुजों की सर्वांगसमता के लिए कुछ और कसौटियाँ
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: त्रिभुज - प्रश्नावली 7.4 [पृष्ठ ७०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 9
अध्याय 7 त्रिभुज
प्रश्नावली 7.4 | Q 8. | पृष्ठ ७०

संबंधित प्रश्न

एक समकोण त्रिभुज ABC में, जिसमें कोण C समकोण है, M कर्ण AB का मध्य-बिंदु है। C को M से मिलाकर D तक इस प्रकार बढ़ाया गया है कि DM = CM है। बिंदु D को बिंदु B से मिला दिया जाता है (देखिए आकृति)। दर्शाइए कि:

  1. △AMC ≌ △BMD
  2. ∠DBC एक समकोण है।
  3. △DBC ≌ △ACB
  4. CM = `1/2` AB


AD एक समद्विबाहु त्रिभुज ABC का एक शीर्षलम्ब है, जिसमें AB = AC है। दर्शाइए कि:

  1. AD रेखाखंड BC को समद्विभाजित करता है।
  2. AD कोण A को समद्विभाजित करता है।

∆PQR में, ∠P = 70° और ∠R = 30° है। इस त्रिभुज की कौन-सी भुजा सबसे लंबी है? अपने उत्तर के लिए कारण दीजिए। 


AB = AC वाले एक समद्विबाहु त्रिभुज के कोणों B और C के समद्विभाजक परस्पर O पर प्रतिच्छेद करते हैं। BO को एक बिंदु M तक बढ़ाया जाता है। सिद्ध कीजिए कि ∠MOC = ∠ABC है।


एक समबाहु त्रिभुज के सभी कोण ज्ञात कीजिए।


ABC एक समद्विबाहु त्रिभुज है, जिसमें AC = BC है। AD और BE क्रमश : BC और AC पर शीर्षलंब हैं। सिद्ध कीजिए कि AE = BD है।


दर्शाइए कि एक चतुर्भुज ABCD में, AB + BC + CD + DA > AC + BD होता है।


एक समकोण त्रिभुज में, सिद्ध कीजिए कि कर्ण के मध्य-बिंदु को उसके सम्मुख शीर्ष से मिलाने वाला रेखाखंड कर्ण का आधा होता है।


सिद्ध कीजिए कि एक समबाहु त्रिभुज को छोड़कर, किसी त्रिभुज में सबसे लंबी भुजा का सम्मुख कोण एक समकोण के `2/3` भाग से बड़ा होता हैं।


ABCD एक चतुर्भुज है, जिसमें AB = AD और CB = CD है। सिद्ध कीजिए कि AC, BD का लंब समद्विभाजक है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×