Advertisements
Advertisements
प्रश्न
एक समबाहु त्रिभुज के सभी कोण ज्ञात कीजिए।
उत्तर
मान लीजिए कि ABC एक समबाहु त्रिभुज है जिसमें AB = BC = CA है।
हमारे पास है, AB = AC ⇒ ∠C = ∠B ...[समान भुजाओं के सम्मुख कोण बराबर होते हैं।]
माना, ∠C = ∠B = x° ...(i)
अब, BC = BA
⇒ ∠A = ∠C ...(ii) [समान भुजाओं के सम्मुख कोण बराबर होते हैं।]
समीकरण (i) और (ii) से,
∠A = ∠B = ∠C = x
अब, ΔABC में, ∠A + ∠B + ∠C = 180° ...[त्रिभुज के कोण योग गुण द्वारा]
⇒ x + x + x = 180°
⇒ 3x = 180°
∴ x = 60°
अत:, ∠A = ∠B = ∠C = 60°
APPEARS IN
संबंधित प्रश्न
AD एक समद्विबाहु त्रिभुज ABC का एक शीर्षलम्ब है, जिसमें AB = AC है। दर्शाइए कि:
- AD रेखाखंड BC को समद्विभाजित करता है।
- AD कोण A को समद्विभाजित करता है।
त्रिभुजों ABC और PQR में, ∠A = ∠Q और ∠B = ∠R है। ∆PQR की कौन-सी भुजा ∆ABC की भुजा BC के बराबर होनी चाहिए कि दोनों त्रिभुज सर्वांगसम हों? अपने उत्तर के लिए कारण दीजिए।
क्या भुजाओं की लंबाइयाँ 8 cm, 7 cm और 4 cm लेकर किसी त्रिभुज की रचना की जा सकती है? अपने उत्तर के लिए कारण दीजिए।
AB = AC वाले एक समद्विबाहु त्रिभुज के कोणों B और C के समद्विभाजक परस्पर O पर प्रतिच्छेद करते हैं। दर्शाइए कि ∠ABC के आसन्न एक बहिष्कोण ∠BOC के बराबर हैं।
निम्नलिखित आकृति में, AD कोण BAC का समद्विभाजक है। सिद्ध कीजिए कि AB > BD है।
O एक वर्ग ABCD के अभ्यंतर में स्थित बिंदु इस प्रकार है कि OAB एक समबाहु त्रिभुज है। सिद्ध कीजिए कि ∆OCD एक समद्विबाहु त्रिभुज है।
ABC एक समद्विबाहु त्रिभुज है, जिसमें AC = BC है। AD और BE क्रमश : BC और AC पर शीर्षलंब हैं। सिद्ध कीजिए कि AE = BD है।
दर्शाइए कि एक चतुर्भुज ABCD में, AB + BC + CD + DA > AC + BD होता है।
एक समलंब ABCD की क्रमशः समांतर भुजाओं AB और DC के मध्य-बिंदुओं M और N को मिलाने वाला रेखाखंड दोनों भुजाओं AB और DC पर लंब है। सिद्ध कीजिए कि AD = BC है।
ABCD एक चतुर्भुज इस प्रकार है कि विकर्ण AC दोनों कोणों A और C का समद्विभाजक है। सिद्ध कीजिए कि AB = AD और CB = CD है।