हिंदी

O एक वर्ग ABCD के अभ्यंतर में स्थित बिंदु इस प्रकार है कि OAB एक समबाहु त्रिभुज है। सिद्ध कीजिए कि ∆OCD एक समद्विबाहु त्रिभुज है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

O एक वर्ग ABCD के अभ्यंतर में स्थित बिंदु इस प्रकार है कि OAB एक समबाहु त्रिभुज है। सिद्ध कीजिए कि ∆OCD एक समद्विबाहु त्रिभुज है। 

योग

उत्तर

दिया गया है - वर्ग ABCD के अभ्यंतर में O एक बिंदु इस प्रकार है कि ΔOAB एक समबाहु त्रिभुज है।


रचना - OC और OD को मिलाइए।

दर्शाना है - ΔOCD एक समद्विबाहु त्रिभुज है।

उपपत्ति - चूँकि, AOB एक समबाहु त्रिभुज है।

∴ ∠OAB = ∠OBA = 60°  ...(i)

साथ ही, ∠DAB = ∠CBA = 90°  ...(ii) [वर्ग का प्रत्येक कोण 90° है] [∵ ABCD एक वर्ग है।]

समीकरण (i) को समीकरण (ii) से घटाने पर, हम पाते हैं।

∠DAB – ∠OAB = ∠CBA – ∠OBA = 90° – 60°

यानी ∠DAO = ∠CBO = 30°

ΔAOD और ΔBOC में,

AO = BO  ...[दिया गया है।] [समबाहु त्रिभुज की सभी भुजाएँ बराबर होती हैं।]

∠DAO = ∠CBO  ...[ऊपर सिद्ध]

और AD = BC   ...[एक वर्ग की भुजाएँ बराबर होती हैं।]

∴ ΔAOD ≅ ΔBOC  ...[SAS सर्वांगसमता नियम द्वारा]

अत:, OD = OC  ...[CPCT द्वारा]

ΔCOD में,

OC = OD

अत:, ΔCOD एक समद्विबाहु त्रिभुज है।

अतः सिद्ध हुआ।

shaalaa.com
त्रिभुजों की सर्वांगसमता के लिए कुछ और कसौटियाँ
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: त्रिभुज - प्रश्नावली 7.4 [पृष्ठ ७०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 9
अध्याय 7 त्रिभुज
प्रश्नावली 7.4 | Q 7. | पृष्ठ ७०

संबंधित प्रश्न

l और m दो समांतर रेखाएँ हैं जिन्हें समांतर रेखाओं p और q का एक अन्य युग्म प्रतिच्छेदित करता है (देखिए आकृति) दर्शाइए कि: △ABC ≌ △CDA है।


रेखा l कोण A को समद्विभाजित करती है और B रेखा l पर स्थित कोई बिंदु है। BP और BQ कोण A की भुजाओं पर B से डाले गए लंब हैं। (देखिए आकृति) दर्शाइए कि:

  1. △APB ≌ △AQB
  2. BP = BQ है, अर्थात् बिंदु B कोण की भुजाओं से समदूरस्थ है।


एक त्रिभुज ABC की दो भुजाएँ AB और BC तथा माध्यिका AM क्रमशः एक दूसरे त्रिभुज की भुजाओं PQ और QR तथा माध्यिका PN के बराबर है (देखिए आकृति)। दर्शाइए कि:
  1. ∆ABM ≅ ∆PQN
  2. ∆ABC ≅ ∆PQR


यदि ∆PQR ≅ ∆EDF है, तो क्या यह कहना सत्य है कि PR = EF है? अपने उत्तर के लिए कारण दीजिए।


AD किसी त्रिभुज ABC की एक माध्यिका है। क्या यह कहना सत्य है कि AB + BC + CA > 2AD है? अपने उत्तर के लिए कारण दीजिए।


∆PQR की भुजा QR पर S कोई बिंदु स्थित है। दर्शाइए कि PQ + QR + RP > 2PS है।


ABC एक समकोण त्रिभुज है, जिसमें AB = AC है। ∠A का समद्विभाजक BC से D पर मिलता है। सिद्ध कीजिए कि BC = 2AD है।


दर्शाइए कि एक चतुर्भुज ABCD में, AB + BC + CD + DA < 2(BD + AC) होता है।


एक त्रिभुज ABC में, D भुजा AC का मध्य-बिंदु है ताकि BD = `1/2` AC है। दर्शाइए कि ∠ABC एक समकोण है।


सिद्ध कीजिए कि एक समबाहु त्रिभुज को छोड़कर, किसी त्रिभुज में सबसे लंबी भुजा का सम्मुख कोण एक समकोण के `2/3` भाग से बड़ा होता हैं।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×