English

निम्नलिखित आकृति में, AD कोण BAC का समद्विभाजक है। सिद्ध कीजिए कि AB > BD है। - Mathematics (गणित)

Advertisements
Advertisements

Question

निम्नलिखित आकृति में, AD कोण BAC का समद्विभाजक है। सिद्ध कीजिए कि AB > BD है।

Sum

Solution

दिया गया है - ABC एक त्रिभुज इस प्रकार है कि AD, ∠BAC का समद्विभाजक है।

सिद्ध करने के लिए - AB > BD

उपपत्ति - चूँकि AD, ∠BAC का समद्विभाजक है। 

परंतु ∠BAD = CAD  ...(i)

∴ ∠ADB > ∠CAD  ...[त्रिभुज का बहिष्कोण प्रत्येक सम्मुख अंतःकोण से बड़ा होता है।]

∴ ∠ADB > ∠BAD  ...[समीकरण (i) से]

AB > BD  ...[बड़े कोण की सम्मुख भुजा बड़ी होती है।]

अतः सिद्ध हुआ।

shaalaa.com
त्रिभुजों की सर्वांगसमता के लिए कुछ और कसौटियाँ
  Is there an error in this question or solution?
Chapter 7: त्रिभुज - प्रश्नावली 7.3 [Page 68]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 9
Chapter 7 त्रिभुज
प्रश्नावली 7.3 | Q 11. | Page 68

RELATED QUESTIONS

एक रेखाखंड AB पर AD और BC दो बराबर लंब रेखाखंड हैं (देखिए आकृति)। दशाईए कि CD, रेखाखंड AB को समद्विभाजित करता है।


रेखा l कोण A को समद्विभाजित करती है और B रेखा l पर स्थित कोई बिंदु है। BP और BQ कोण A की भुजाओं पर B से डाले गए लंब हैं। (देखिए आकृति) दर्शाइए कि:

  1. △APB ≌ △AQB
  2. BP = BQ है, अर्थात् बिंदु B कोण की भुजाओं से समदूरस्थ है।


AB एक रेखाखंड है और P इसका मध्य-बिंदु है। D और E रेखाखंड AB के एक ही ओर स्थित दो बिंदु इस प्रकार हैं कि ∠BAD = ∠ABE और ∠EPA = ∠DPB है। (देखिए आकृति)। दर्शाइए कि:

  1. △DAP ≌ △EBP
  2. AD = BE


एक समकोण त्रिभुज ABC में, जिसमें कोण C समकोण है, M कर्ण AB का मध्य-बिंदु है। C को M से मिलाकर D तक इस प्रकार बढ़ाया गया है कि DM = CM है। बिंदु D को बिंदु B से मिला दिया जाता है (देखिए आकृति)। दर्शाइए कि:

  1. △AMC ≌ △BMD
  2. ∠DBC एक समकोण है।
  3. △DBC ≌ △ACB
  4. CM = `1/2` AB


ABC एक समकोण त्रिभुज है, जिसमें ∠A = 90° और AB = AC है। ∠B और ∠C ज्ञात कीजिए।


BE और CF एक त्रिभुज ABC के दो बराबर शीर्षलम्ब हैं। RHS सर्वांगसमता नियम का प्रयोग करके सिद्ध कीजिए कि ΔABC एक समद्विबाहु त्रिभुज है।

AB = AC वाले एक ∆ABC की भुजा, AC पर D कोई बिंदु स्थित है। दर्शाइए कि CD < BD है।


ABC और DBC एक ही आधार BC पर स्थित दो त्रिभुज इस प्रकार हैं कि बिंदु A और D आधार BC के विपरीत ओर स्थित हैं, AB = AC और DB = DC है। दर्शाइए कि AD रेखाखंड BC का लंब समद्विभाजक है। 


दर्शाइए कि एक चतुर्भुज ABCD में, AB + BC + CD + DA < 2(BD + AC) होता है।


एक समलंब ABCD की क्रमशः समांतर भुजाओं AB और DC के मध्य-बिंदुओं M और N को मिलाने वाला रेखाखंड दोनों भुजाओं AB और DC पर लंब है। सिद्ध कीजिए कि AD = BC है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×