English

एक समलंब ABCD की क्रमशः समांतर भुजाओं AB और DC के मध्य-बिंदुओं M और N को मिलाने वाला रेखाखंड दोनों भुजाओं AB और DC पर लंब है। सिद्ध कीजिए कि AD = BC है। - Mathematics (गणित)

Advertisements
Advertisements

Question

एक समलंब ABCD की क्रमशः समांतर भुजाओं AB और DC के मध्य-बिंदुओं M और N को मिलाने वाला रेखाखंड दोनों भुजाओं AB और DC पर लंब है। सिद्ध कीजिए कि AD = BC है।

Sum

Solution

दिया गया है - समलंब ABCD में, बिंदु M और N क्रमशः समानांतर भुजाओं AB और DC के मध्य-बिंदु हैं और MN को मिलाते हैं, जो AB और DC के लंबवत है।

सिद्ध करना है - AD = BC

उपपत्ति - चूँकि M, AB का मध्य-बिंदु है।

∴ AM = MB

अब, ΔAMN और ΔBMN में,

AM = MB  ...[ऊपर प्रमाणित]

∠3 = ∠4   ...[प्रत्येक 90°]

MN = MN  ...[उभयनिष्ठ पक्ष]

∴ ΔAMN ≅ ΔBMN   ...[SAS सर्वांगसमता नियम द्वारा]

∴ ∠1 = ∠2   ...[CPCT द्वारा]

उपरोक्त समीकरण के दोनों पक्षों को –1 से गुणा करने पर और फिर दोनों पक्षों में 90° जोड़ने पर, हमें प्राप्त होता है।

90° – ∠1 = 90° – ∠2

⇒ ∠AND = ∠BNC  ...(i)


अब, ΔADN और ΔBCN में,

∠AND = ∠BNC   ...[समीकरण (i) से]

AN = BN   ...[∵ΔAMN ≅ ΔBMN]

और DN = NC  ...[∵ N, CD का मध्य-बिंदु है (दिया गया है।)]

∴ ΔADN ≅ ΔBCN   ...[SAS सर्वांगसमता नियम द्वारा]

अतः, AD = BC   ...[CPCT द्वारा]

अतः सिद्ध हुआ।

shaalaa.com
त्रिभुजों की सर्वांगसमता के लिए कुछ और कसौटियाँ
  Is there an error in this question or solution?
Chapter 7: त्रिभुज - प्रश्नावली 7.4 [Page 71]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 9
Chapter 7 त्रिभुज
प्रश्नावली 7.4 | Q 16. | Page 71

RELATED QUESTIONS

आकृति में, AC = AE, AB = AD और ∠BAD = ∠EAC है। दर्शाइए कि BC = DE है।


एक समकोण त्रिभुज ABC में, जिसमें कोण C समकोण है, M कर्ण AB का मध्य-बिंदु है। C को M से मिलाकर D तक इस प्रकार बढ़ाया गया है कि DM = CM है। बिंदु D को बिंदु B से मिला दिया जाता है (देखिए आकृति)। दर्शाइए कि:

  1. △AMC ≌ △BMD
  2. ∠DBC एक समकोण है।
  3. △DBC ≌ △ACB
  4. CM = `1/2` AB


ABC एक समकोण त्रिभुज है, जिसमें ∠A = 90° और AB = AC है। ∠B और ∠C ज्ञात कीजिए।


∆PQR में, ∠P = 70° और ∠R = 30° है। इस त्रिभुज की कौन-सी भुजा सबसे लंबी है? अपने उत्तर के लिए कारण दीजिए। 


M किसी त्रिभुज ABC की भुजा BC पर स्थित एक बिंदु ऐसा है कि AM कोण BAC का समद्विभाजक है। क्या यह कहना सत्य है कि त्रिभुज का परिमाप 2 AM से अधिक है? अपने उत्तर के लिए कारण दीजिए।


AB = AC वाले एक समद्विबाहु त्रिभुज के कोणों B और C के समद्विभाजक परस्पर O पर प्रतिच्छेद करते हैं। BO को एक बिंदु M तक बढ़ाया जाता है। सिद्ध कीजिए कि ∠MOC = ∠ABC है।


एक समबाहु त्रिभुज के सभी कोण ज्ञात कीजिए।


एक त्रिभुज ABC में, D भुजा AC का मध्य-बिंदु है ताकि BD = `1/2` AC है। दर्शाइए कि ∠ABC एक समकोण है।


दो रेखाएँ l और m बिंदु O पर प्रतिच्छेद करती हैं तथा P बिंदु O से होकर जाने वाली रेखा n पर स्थित कोई बिंदु इस प्रकार है कि P रेखाओं l और m से समदूरस्थ है। सिद्ध कीजिए कि n रेखाओं l और m के बीच बनने वाले कोण का समद्विभाजक है।


ABCD एक चतुर्भुज इस प्रकार है कि विकर्ण AC दोनों कोणों A और C का समद्विभाजक है। सिद्ध कीजिए कि AB = AD और CB = CD है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×