Advertisements
Advertisements
Question
Each set Xr contains 5 elements and each set Yr contains 2 elements and \[\bigcup\limits_{r=1}^{20} X_{r} = S = \bigcup\limits_{r=1}^{n} Y_{r}\] If each element of S belong to exactly 10 of the Xr’s and to exactly 4 of the Yr’s, then n is ______.
Options
10
20
100
50
Solution
Each set Xr contains 5 elements and each set Yr contains 2 elements and \[\bigcup\limits_{r=1}^{20} X_{r} = S = \bigcup\limits_{r=1}^{n} Y_{r}\] If each element of S belong to exactly 10 of the Xr’s and to exactly 4 of the Yr’s, then n is 20.
Explanation:
Since, `"n"("X"_"r")` = 5
\[\bigcup\limits_{r=1}^{20} X\] = S
We get n(S) = 100
But each element of S belong to exactly 10 of the `"X"_"r"`'s
So, `100/10` = 10 are the number of distinct elements in S.
Also each element of S belong to exactly 4 of the Yr’s and each Yr contain 2 elements.
If S has n number of Yr in it.
Then `(2"n")/4` = 10
Which gives n = 20
APPEARS IN
RELATED QUESTIONS
Find the union of the following pairs of sets:
A = {a, e, i, o, u}, B = {a, b, c}
Find the union of the following pairs of sets:
A = {x : x is a natural number and multiple of 3}
B = {x : x is a natural number less than 6}
If A and B are two sets such that A ⊂ B, then what is A ∪ B?
If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}; find
A ∪ B
Is it true that for any sets A and B, P (A) ∪ P (B) = P (A ∪ B)? Justify your answer.
We have to find the smallest set A such that\[A \cup \left\{ 1, 2 \right\} = \left\{ 1, 2, 3, 5, 9 \right\}\]
Let A = {1, 2, 4, 5} B = {2, 3, 5, 6} C = {4, 5, 6, 7}. Verify the following identities:
\[A \cup \left( B \cap C \right) = \left( A \cup B \right) \cap \left( A \cup C \right)\]
Let A = {1, 2, 4, 5} B = {2, 3, 5, 6} C = {4, 5, 6, 7}. Verify the following identitie:
\[A \cap \left( B \cup C \right) = \left( A \cap B \right) \cup \left( A \cap C \right)\]
Let A = {1, 2, 4, 5} B = {2, 3, 5, 6} C = {4, 5, 6, 7}. Verify the following identitie:
\[A - \left( B \cup C \right) = A\left( A - B \right) \cap \left( A - C \right)\]
Let A = {1, 2, 4, 5} B = {2, 3, 5, 6} C = {4, 5, 6, 7}. Verify the following identitie:
\[A \cap \left( B ∆ C \right) = \left( A \cap B \right) ∆ \left( A \cap C \right)\]
If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}; find
A ∪ C
Determine whether the following statement is true or false. Justify your answer.
For all sets A, B, and C, if A ⊂ B, then A ∩ C ⊂ B ∩ C
Determine whether the following statement is true or false. Justify your answer.
For all sets A, B, and C, if A ⊂ B, then A ∪ C ⊂ B ∪ C
Determine whether the following statement is true or false. Justify your answer.
For all sets A, B, and C, if A ⊂ C and B ⊂ C, then A ∪ B ⊂ C
For all sets A and B, A ∪ (B – A) = A ∪ B
For all sets A and B, (A ∪ B) – B = A – B
If A and B are two sets, then A ∩ (A ∪ B) equals ______.
If U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, A = {1, 2, 3, 5}, B = {2, 4, 6, 7} and C = {2, 3, 4, 8}. Then (B ∪ C)′ is ______.
If U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, A = {1, 2, 3, 5}, B = {2, 4, 6, 7} and C = {2, 3, 4, 8}. Then (C – A)′ is ______.
Let S1 = `{x ∈ R - {1, 2}: ((x + 2)(x^2 + 3x + 5))/(-2 + 3x - x^2) ≥ 0}` and S2 = {x ∈ R : 32x – 3x+1 – 3x+2 + 27 ≤ 0}. Then, S1 ∪ S2 is equal to ______.