Advertisements
Advertisements
Question
एक व्यक्ती एका मंदिरापासून 50 मी. अंतरावर उभा आहे. त्या व्यक्तीने मंदिराच्या कळसाकडे पाहिले असता 45° मापाचा उन्नत कोन तयार होतो. तर त्या मंदिराची उंची किती?
Solution
समजा, आकृतीत AB ही मंदिराची उंची आहे.
C या ठिकाणी व्यक्ती उभी आहे.
AB = x मी
BC = 50 मी
उन्नत कोन ∠CAB = θ = 45°
ΔABC मध्ये, ∠B = 90°
tanθ = `"AB"/"BC"`
tan45° = `x/50`
∴ `1 = x/50` ...........[tan45° = 1]
∴ x = 50 मी
∴ मंदिराची उंची 50 मी आहे.
APPEARS IN
RELATED QUESTIONS
एक व्यक्ती एका चर्चपासून 80 मी अंतरावर उभी आहे. त्या व्यक्तीने चर्चच्या छताकडे पाहिले असता 45° मापाचा उन्नत कोन होतो, तर चर्चची उंची किती?
एक मुलगा एका इमारतीपासून 48 मीटर अंतरावर उभा आहे. त्या इमारतीच्या वरच्या टोकाकडे पाहताना त्या मुलाला 30° मापाचा उन्नतकोन करावा लागतो, तर त्या इमारतीची उंची किती ?
दीपगृहावरून एका जहाजाकडे पाहताना निरीक्षकाला 30° मापाचा अवनत कोन करावा लागतो. जर दीपगृहाची उंची 100 मी असेल तर ते जहाज दीपगृहापासून किती अंतरावर आहे?
tan θ × A = sin θ, तर A = ?
जर tan θ = `9/40`, तर sec θ ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.
कृती: sec2θ = 1 + `square` ......[त्रि. नित्य समीकरण]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square`
sec θ = `square`
`(sintheta + tantheta)/costheta` = tan θ(1 + sec θ) हे सिद्ध करा.
जर sin A = `3/5` तर 4 tan A + 3 sin A = 6 cos A दाखवा.
जर sec A = `x + 1/(4x)`, sec A + tan A = 2x किंवा `1/(2x)` हे दाखवा.
∆ABC मध्ये, `sqrt(2)` AC = BC, sin A = 1, sin2A + sin2B + sin2C = 2, तर ∠A = ? , ∠B = ?, ∠C = ?
बाह्यस्पर्शी असलेल्या दोन वर्तुळाच्या त्रिज्या अनुक्रमे 5 सेमी व 3 सेमी असतील तर त्यांच्या केंद्रातील अंतर किती असेल?