English

Evaluate ( 2 X + 1 ) 2 D 2 Y D X 2 − 2 ( 2 X + 1 ) D Y D X − 12 Y = 6 X - Applied Mathematics 2

Advertisements
Advertisements

Question

Evaluate `(2x+1)^2(d^2y)/(dx^2)-2(2x+1)(dy)/(dx)-12y=6x`

Sum

Solution

`(2x+1)^2(d^2y)/(dx^2)-2(2x+1)(dy)/(dx)-12y=6x`

Put `(2x+1)=e^z  =>  x=(e^x-1)/2`

`(dz)/(dx)=2/(2x+1)`    but`(dy)/(dx)=(dy)/(dx)(dz)/(dx)=2(dy)/(dx)=2/(2x+1)"Dy"    "where"   "D"=d/(dz)`

`therefore(2x+1)(dy)/(dx)=2"Dy"`

`therefore(2x+1)^2(d^2y)/(dx^2)=2^2"D(D-1)y"`

From (1),

`4D(D-1)y-4Dy-12y=6((e^x-1)/2)`

`(4D^2-8D-12)y=3(e^z-1)`

For complementary solution ,

`(4D^2-8D-12)=0`

∴D = -1,3

`thereforey_c=c_1e^(-z)+c_2 e^(3z)`

For particular integral ,

`y_p=1/(f(D))X`

`y_p=1/(4D^2-8D-12)(3(e^z-1))`

`therefore y_p=3/4 1/(D^2-2D-3)(e^z-1)`    put D = a = 1 and D = a = 0

`thereforey_p=3/4(1/3-e^z/4)`

The general solution of given differential eqn is ,

`thereforey_g=y_c+y_p=c_1e^(-z)+c_2e^(3z)+3/4(1/3-e^z/4)`
Resubstituting 𝒛 ,

`therefore y_g=c_1(2x+1)^(-1)+c_2(2x+1)^3+3/4(1/3-(2x+1)/4)`

shaalaa.com
Linear Differential Equation with Constant Coefficient‐ Complementary Function
  Is there an error in this question or solution?
2017-2018 (June) CBCGS

RELATED QUESTIONS

Evaluate `(d^4y)/(dx^4)+2(d^2y)/(dx^2)+y=0`


A resistance of 100 ohms and inductance of 0.5 henries are connected in series With a battery of 20 volts. Find the current at any instant if the relation between L,R,E is L `(di)/(dt)+Ri=E.`


Solve `(D^3+1)^2y=0`


Solve `(D^3+D^2+D+1)y=sin^2x`


Solve the ODE `(D-1)^2 (D^2+1)^2y=0` 

 

 


Evaluate `int_0^1 int_0^(x2) y/(ex) dy  dx` 


Evaluate `int_0^1( x^a-1)/log x dx` 

 


Solve `(1+x)^2(d^2y)/(dx^2)+(1+x)(dy)/(dx)+y=4cos(log(1+x))`


Find the length of cycloid from one cusp to the next , where `x=a(θ + sinθ) , y=a(1-cosθ)`


Solve `(D^2-3D+2) y= 2 e^x sin(x/2)`


Using D.U.I.S prove that `int_0^∞ e^-(x^+a^2/x^2) dx=sqrtpi/2 e^(-2a), a> 0` 


Solve `(D^2+2)y=e^xcosx+x^2e^(3x)`


Evaluate `int_0^1int_0^( 1-x)1int_0^( 1-x-y)     1/(x+y+z+1)^3 dx dy dz` 

 


Find the mass of the lemniscate 𝒓𝟐=𝒂𝟐𝒄𝒐𝒔 𝟐𝜽 if the density at any point is Proportional to the square of the distance from the pole . 


Solve`  x^2 (d^3y)/dx^3+3x (d^2y)/dx^2+dy/dx+y/x=4log x` 

 


Solve `(D^2-7D-6)y=(1+x^2)e^(2x)`


Apply Rungee Kutta method of fourth order to find an approximate Value of y when x=0.4 given that `dy/dx=(y-x)/(y+x),y=1` 𝒚=𝟏 𝒘𝒉𝒆𝒏 𝒙=𝟎 Taking h=0.2. 


Solve by variation of parameters` ((d^2y)/dx^2+1)y=1/(1+sin x)`


Compute the value of `int _0.2^1.4 (sin  x - In x+e^x) ` Trapezoidal Rule (ii) Simpson’s (1/3)rd rule (iii) Simpson’s (3/8)th rule by dividing Into six subintervals. 


Evaluate `int_0^(a/sqrt2) int_y^(sqrt(a2-y^2)) log (x^2+y^2) "dxdy by changing to polar Coordinates".` 


Evaluate `int int int  x^2` `yzdzdydz`over the volume bounded by planes x=0, y=0, z=0 and `x/a+y/b+z/c=1`


Evaluate `int_0^inftye^(x^3)/sqrtx dx`


Find the length of the curve `x=y^3/3+1/(4y)` from `y=1 to y=2`


Evaluate `int_0^1 int_(x^2)^x xy(x+y)dydx.`


Solve `(4x+3y-4)dx+(3x-7y-3)dy=0`


Solve `dy/dx=1+xy` with initial condition `x_0=0,y_0=0.2` By Taylors series method. Find the approximate value of y for x= 0.4(step size = 0.4).


Solve `(d^2y)/dx^2-16y=x^2 e^(3x)+e^(2x)-cos3x+2^x`


Show that `int_0^pi log(1+acos x)/cos x dx=pi sin^-1 a  0 ≤ a ≤1.` 


Evaluate `int int int (x+y+z)` `dxdydz ` over the tetrahedron bounded by the planes x = 0, y = 0, z = 0 and x + y + z = 1.


Find the mass of lamina bounded by the curves 𝒚 = 𝒙𝟐 − 𝟑𝒙 and 𝒚 = 𝟐𝒙 if the density of the lamina at any point is given by `24/25 xy` 


In a circuit containing inductance L, resistance R, and voltage E, the current i is given by `L (di)/dt+Ri=E`.Find the current i at time t at t = 0 and i = 0 and L, R and E are constants.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×