English

Compute the value of ∫ 1.4 0.2 ( sin x − I n x + e x ) Trapezoidal Rule (ii) Simpson’s (1/3)rd rule (iii) Simpson’s (3/8)th rule by dividing Into six subintervals. - Applied Mathematics 2

Advertisements
Advertisements

Question

Compute the value of `int _0.2^1.4 (sin  x - In x+e^x) ` Trapezoidal Rule (ii) Simpson’s (1/3)rd rule (iii) Simpson’s (3/8)th rule by dividing Into six subintervals. 

Solution

let I =` int _0.2 ^1.4 (sin x -"in"  x+e^x) dx`  

∴` n=6 ∴ h=(b-a)/n=(1.4-0.2)/6=1/5` 

`x_0=0.2` `x_1=0.4` `x_2=0.6` `x_3=0.8` `x_4=1.0` `x_5=1.2` `x_6=1.4`
`y_0=3.02` `y_1=2.79` `y_2=2.89` `y_3=3.16` `y_4=3.55` `y_5=4.06` `y_6=4.4`

(i) Trapezoidal rule : `I= h/2 [x+2R]`        -----------------(1) 

X = sum of extreme ordinates=`7.42` 

R=sum of remaining ordinates = `16.45`

`I=1/5xx2 (7.42+2(16.45))`              ……………….(from 1) 

`I=4.032` 

(ii) Simpson’s `(1/3)^(rd)` rule : 

`I=h/3[X+2E+40]`                      ---------------(2) 

X= sum of exterme ordinates= `y_0+y_6=4.4+3.02=7.42`

E= sum of even base ordinates =` y_2+y_4=6.44` 

O=sum of odd base ordinates = `y_1+y_3+y_5= 10.01` 

`I=1/3xx5(7.42+2xx6.44+4xx10..01)` 

`I = 4.022 ` 

(iii) Simpson’s `(3/8)^(th)` rule 

`I=3h/8[X+2T+3R]`                            -------------(3) 

X= sum of extreme ordinates=`y_0+y_6=4.4+3.02=7.42` 

T= sum of multiple of three base ordinates=`y_3=3.16` 

R= sum of remaining ordinates=`y_1+y_2+y_4+y_5=13.49` 

∴ `I=(3xx1)/(8xx5) [7.42+2xx3.16+3xx13.49]`

`[I=4.02075]` 

shaalaa.com
Linear Differential Equation with Constant Coefficient‐ Complementary Function
  Is there an error in this question or solution?
2016-2017 (June) CBCGS

RELATED QUESTIONS

Evaluate `(d^4y)/(dx^4)+2(d^2y)/(dx^2)+y=0`


Evaluate `(2x+1)^2(d^2y)/(dx^2)-2(2x+1)(dy)/(dx)-12y=6x`


A resistance of 100 ohms and inductance of 0.5 henries are connected in series With a battery of 20 volts. Find the current at any instant if the relation between L,R,E is L `(di)/(dt)+Ri=E.`


Solve `(D^3+1)^2y=0`


Solve `(D^3+D^2+D+1)y=sin^2x`


Solve the ODE `(D-1)^2 (D^2+1)^2y=0` 

 

 


Evaluate `int_0^1 int_0^(x2) y/(ex) dy  dx` 


Evaluate `int_0^1( x^a-1)/log x dx` 

 


Solve `(1+x)^2(d^2y)/(dx^2)+(1+x)(dy)/(dx)+y=4cos(log(1+x))`


Find the length of cycloid from one cusp to the next , where `x=a(θ + sinθ) , y=a(1-cosθ)`


Solve `(D^2-3D+2) y= 2 e^x sin(x/2)`


Using D.U.I.S prove that `int_0^∞ e^-(x^+a^2/x^2) dx=sqrtpi/2 e^(-2a), a> 0` 


Solve `(D^2+2)y=e^xcosx+x^2e^(3x)`


Evaluate `int_0^1int_0^( 1-x)1int_0^( 1-x-y)     1/(x+y+z+1)^3 dx dy dz` 

 


Find the mass of the lemniscate 𝒓𝟐=𝒂𝟐𝒄𝒐𝒔 𝟐𝜽 if the density at any point is Proportional to the square of the distance from the pole . 


Solve`  x^2 (d^3y)/dx^3+3x (d^2y)/dx^2+dy/dx+y/x=4log x` 

 


Solve `(D^2-7D-6)y=(1+x^2)e^(2x)`


Apply Rungee Kutta method of fourth order to find an approximate Value of y when x=0.4 given that `dy/dx=(y-x)/(y+x),y=1` 𝒚=𝟏 𝒘𝒉𝒆𝒏 𝒙=𝟎 Taking h=0.2. 


Solve by variation of parameters` ((d^2y)/dx^2+1)y=1/(1+sin x)`


Evaluate `int_0^(a/sqrt2) int_y^(sqrt(a2-y^2)) log (x^2+y^2) "dxdy by changing to polar Coordinates".` 


Evaluate `int int int  x^2` `yzdzdydz`over the volume bounded by planes x=0, y=0, z=0 and `x/a+y/b+z/c=1`


Evaluate `int_0^inftye^(x^3)/sqrtx dx`


Find the length of the curve `x=y^3/3+1/(4y)` from `y=1 to y=2`


Solve `(D^2+D)y=e^(4x)`  


Evaluate `int_0^1 int_(x^2)^x xy(x+y)dydx.`


Solve `(4x+3y-4)dx+(3x-7y-3)dy=0`


Solve `dy/dx=1+xy` with initial condition `x_0=0,y_0=0.2` By Taylors series method. Find the approximate value of y for x= 0.4(step size = 0.4).


Solve `(d^2y)/dx^2-16y=x^2 e^(3x)+e^(2x)-cos3x+2^x`


Show that `int_0^pi log(1+acos x)/cos x dx=pi sin^-1 a  0 ≤ a ≤1.` 


Evaluate `int int int (x+y+z)` `dxdydz ` over the tetrahedron bounded by the planes x = 0, y = 0, z = 0 and x + y + z = 1.


Find the mass of lamina bounded by the curves 𝒚 = 𝒙𝟐 − 𝟑𝒙 and 𝒚 = 𝟐𝒙 if the density of the lamina at any point is given by `24/25 xy` 


In a circuit containing inductance L, resistance R, and voltage E, the current i is given by `L (di)/dt+Ri=E`.Find the current i at time t at t = 0 and i = 0 and L, R and E are constants.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×