English

Evaluate the Following One Sided Limit: Lim X → − 8 + 2 X X + 8 - Mathematics

Advertisements
Advertisements

Question

Evaluate the following one sided limit:

\[\lim_{x \to - 8^+} \frac{2x}{x + 8}\]

Solution

\[\lim_{x \to - 8^+} \left( \frac{2x}{x + 8} \right)\]
\[\text{ Let }x = - 8 + h, \text{ where } h \to 0 . \]
\[ \Rightarrow \lim_{h \to 0} \left( \frac{2\left( - 8 + h \right)}{- 8 + h + 8} \right)\] 
\[ = \lim_{h \to 0} \left( \frac{- 16 + 2h}{h} \right)\]
\[ = - \infty\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: Limits - Exercise 29.1 [Page 11]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 29 Limits
Exercise 29.1 | Q 13.04 | Page 11

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find k so that \[\lim_{x \to 2} f\left( x \right)\] \[f\left( x \right) = \begin{cases}2x + 3, & x \leq 2 \\ x + k, & x > 2\end{cases} .\] 


Show that \[\lim_{x \to 0} \frac{1}{x}\] does not exist. 


Let f(x) be a function defined by \[f\left( x \right) = \begin{cases}\frac{3x}{\left| x \right| + 2x}, & x \neq 0 \\ 0, & x = 0\end{cases} .\] Show that \[\lim_{x \to 0} f\left( x \right)\] does not exist.

 

If \[f\left( x \right) = \left\{ \begin{array}{l}2x + 3, & x \leq 0 \\ 3 \left( x + 1 \right), & x > 0\end{array} . \right.\] find \[\lim_{x \to 0} f\left( x \right)\] 


If \[f\left(  x \right) = \left\{ \begin{array}{l}2x + 3, & x \leq 0 \\ 3 \left( x + 1 \right), & x > 0\end{array} . \right.\] find \[\lim_{x \to 1} f\left( x \right)\]


Evaluate \[\lim_{x \to 0} f\left( x \right)\]  where \[f\left( x \right) = \begin{cases}\frac{\left| x \right|}{x}, & x \neq 0 \\ 0, & x = 0\end{cases}\] 


Let a1a2, ..., an be fixed real numbers such that
f(x) = (x − a1) (x − a2) ... (x − an)
What is \[\lim_{x \to a_1} f\left( x \right)?\] Compute \[\lim_{x \to a} f\left( x \right) .\] 


Find \[\lim_{x \to 1^+} \left( \frac{1}{x - 1} \right) .\] 


Evaluate the following one sided limit: 

\[\lim_{x \to 2^+} \frac{x - 3}{x^2 - 4}\] 


Evaluate the following one sided limit: 

\[\lim_{x \to \frac{\pi}{2}} \tan x\]


Evaluate the following one sided limit:

\[\lim_{x \to \frac{\pi}{2}} \tan x\]


Evaluate the following one sided limit:

\[\lim_{x \to 0^-} \frac{x^2 - 3x + 2}{x^3 - 2 x^2}\]


Evaluate the following one sided limit:

\[\lim_{x \to - 2^+} \frac{x^2 - 1}{2x + 4}\]


Evaluate the following one sided limit:

\[\lim_{x \to 0^-} 1 + cosec x\]


Show that \[\lim_{x \to 0} e^{- 1/x}\] does not exist. 


Find: \[ \lim_{x \to \frac{5}{2}} \left[ x \right]\]

 


Find: \[ \lim_{x \to 1} \left[ x \right]\]


Prove that \[\lim_{x \to a^+} \left[ x \right] = \left[ a \right]\] R. Also, prove that \[\lim_{x \to 1^-} \left[ x \right] = 0 .\]


Find \[\lim_{x \to 3^+} \frac{x}{\left[ x \right]} .\]  Is it equal to \[\lim_{x \to 3^-} \frac{x}{\left[ x \right]} .\]


Find \[\lim_{x \to 5/2} \left[ x \right] .\] 


Evaluate \[\lim_{x \to 2} f\left( x \right)\] (if it exists), where \[f\left( x \right) = \left\{ \begin{array}{l}x - \left[ x \right], & x < 2 \\ 4, & x = 2 \\ 3x - 5, & x > 2\end{array} . \right.\]


Show that \[\lim_{x \to 0} \sin \frac{1}{x}\]does not exist. 


Let \[f\left( x \right) = \begin{cases}\frac{k\cos x}{\pi - 2x}, & where x \neq \frac{\pi}{2} \\ 3, & where x = \frac{\pi}{2}\end{cases}\]   and if \[\lim_{x \to \frac{\pi}{2}} f\left( x \right) = f\left( \frac{\pi}{2} \right)\] 


\[\lim_{x \to 3} \left( \frac{1}{x - 3} - \frac{3}{x^2 - 3x} \right)\]

\[\lim_{x \to 0} \frac{\cos 3x - \cos 5x}{x^2}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×