English

Evaluate Lim X → 0 F ( X ) Where F ( X ) = { | X | X , X ≠ 0 0 , X = 0 - Mathematics

Advertisements
Advertisements

Question

Evaluate \[\lim_{x \to 0} f\left( x \right)\]  where \[f\left( x \right) = \begin{cases}\frac{\left| x \right|}{x}, & x \neq 0 \\ 0, & x = 0\end{cases}\] 

Solution

\[f\left( x \right) = \begin{cases}\frac{\left| x \right|}{x}, & x \neq 0 \\ 0, & x = 0\end{cases}\]
\[LHL: \]
\[ \lim_{x \to 0^-} \left( \frac{\left| x \right|}{x} \right)\]
\[\text{ Let } x = 0 - h, \text{ where } h \to 0 . \]
\[ \Rightarrow \lim_{h \to 0} \left( \frac{\left| 0 - h \right|}{- h} \right)\]
\[ = \lim_{h \to 0} \left( \frac{h}{- h} \right) = - 1\]
\[RHL: \]
\[ \lim_{x \to 0^+} f\left( x \right)\]
\[ = \lim_{x \to 0^+} \left( \frac{\left| x \right|}{x} \right)\]
\[\text{ Let } x = 0 + h, \text{ where } h \to 0 . \]
\[ \lim_{h \to 0} \left( \frac{\left| 0 + h \right|}{0 + h} \right) = 1\]
\[LHL \neq RHL\]
\[ \text{ Thus, \lim}_{x \to 0} f\left( x \right) \text{ does not exist } .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: Limits - Exercise 29.1 [Page 11]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 29 Limits
Exercise 29.1 | Q 10 | Page 11

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find k so that \[\lim_{x \to 2} f\left( x \right)\] \[f\left( x \right) = \begin{cases}2x + 3, & x \leq 2 \\ x + k, & x > 2\end{cases} .\] 


Let f(x) be a function defined by \[f\left( x \right) = \begin{cases}\frac{3x}{\left| x \right| + 2x}, & x \neq 0 \\ 0, & x = 0\end{cases} .\] Show that \[\lim_{x \to 0} f\left( x \right)\] does not exist.

 

Let \[f\left( x \right) = \left\{ \begin{array}{l}x + 1, & if x \geq 0 \\ x - 1, & if x < 0\end{array} . \right.\]Prove that \[\lim_{x \to 0} f\left( x \right)\] does not exist.


Find \[\lim_{x \to 3} f\left( x \right)\] where \[f\left( x \right) = \begin{cases}4, & if x > 3 \\ x + 1, & if x < 3\end{cases}\] 


If \[f\left( x \right) = \left\{ \begin{array}{l}2x + 3, & x \leq 0 \\ 3 \left( x + 1 \right), & x > 0\end{array} . \right.\] find \[\lim_{x \to 0} f\left( x \right)\] 


If \[f\left(  x \right) = \left\{ \begin{array}{l}2x + 3, & x \leq 0 \\ 3 \left( x + 1 \right), & x > 0\end{array} . \right.\] find \[\lim_{x \to 1} f\left( x \right)\]


Find \[\lim_{x \to 1} f\left( x \right)\] if \[f\left( x \right) = \begin{cases}x^2 - 1, & x \leq 1 \\ - x^2 - 1, & x > 1\end{cases}\] 


Find \[\lim_{x \to 1^+} \left( \frac{1}{x - 1} \right) .\] 


Evaluate the following one sided limit: 

\[\lim_{x \to 2^-} \frac{x - 3}{x^2 - 4}\] 


Evaluate the following one sided limit:

\[\lim_{x \to 0^+} \frac{1}{3x}\]


Evaluate the following one sided limit:

\[\lim_{x \to - 8^+} \frac{2x}{x + 8}\]


Evaluate the following one sided limit:

\[\lim_{x \to 0^+} \frac{2}{x^{1/5}}\]


Evaluate the following one sided limit:

\[\lim_{x \to \frac{\pi}{2}} \tan x\]


Evaluate the following one sided limit:

\[\lim_{x \to 0^-} \frac{x^2 - 3x + 2}{x^3 - 2 x^2}\]


Evaluate the following one sided limit:

\[\lim_{x \to 0^-} 2 - \cot x\] 


Evaluate the following one sided limit:

\[\lim_{x \to 0^-} 1 + cosec x\]


Show that \[\lim_{x \to 0} e^{- 1/x}\] does not exist. 


Find: \[\ \lim_{x \to 2} \left[ x \right]\] 


Find: \[ \lim_{x \to \frac{5}{2}} \left[ x \right]\]

 


Find: \[ \lim_{x \to 1} \left[ x \right]\]


Prove that \[\lim_{x \to a^+} \left[ x \right] = \left[ a \right]\] R. Also, prove that \[\lim_{x \to 1^-} \left[ x \right] = 0 .\]


Show that \[\lim_{x \to 2^-} \frac{x}{\left[ x \right]} \neq \lim_{x \to 2^+} \frac{x}{\left[ x \right]} .\]


Find \[\lim_{x \to 3^+} \frac{x}{\left[ x \right]} .\]  Is it equal to \[\lim_{x \to 3^-} \frac{x}{\left[ x \right]} .\]


Find \[\lim_{x \to 5/2} \left[ x \right] .\] 


Let \[f\left( x \right) = \begin{cases}\frac{k\cos x}{\pi - 2x}, & where x \neq \frac{\pi}{2} \\ 3, & where x = \frac{\pi}{2}\end{cases}\]   and if \[\lim_{x \to \frac{\pi}{2}} f\left( x \right) = f\left( \frac{\pi}{2} \right)\] 


\[\lim_{x \to 3} \left( \frac{1}{x - 3} - \frac{3}{x^2 - 3x} \right)\]

\[\lim_{n \to \infty} n \sin \left( \frac{\pi}{4 n} \right) \cos \left( \frac{\pi}{4 n} \right)\]

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×