English

Find Lim X → 1 + ( 1 X − 1 ) . - Mathematics

Advertisements
Advertisements

Question

Find limx1+(1x1). 

Solution

limx1+(1x1)
 Let x=1+h, where h0.
limh0(11+h1)
= 

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: Limits - Exercise 29.1 [Page 11]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 29 Limits
Exercise 29.1 | Q 12 | Page 11

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find k so that limx2f(x) f(x)={2x+3,x2x+k,x>2. 


Show that limx01x does not exist. 


Let f(x) be a function defined by f(x)={3x|x|+2x,x00,x=0. Show that limx0f(x) does not exist.

 

Let f(x)={x+1,ifx0x1,ifx<0.Prove that limx0f(x) does not exist.


Let f(x)={x+5,ifx>0x4,ifx<0 limx0f(x)  does not exist. 


Find limx3f(x) where f(x)={4,ifx>3x+1,ifx<3 


If f(x)={2x+3,x03(x+1),x>0. find limx0f(x) 


If f(x)={2x+3,x03(x+1),x>0. find limx1f(x)


Evaluate limx0f(x)  where f(x)={|x|x,x00,x=0 


Let a1a2, ..., an be fixed real numbers such that
f(x) = (x − a1) (x − a2) ... (x − an)
What is limxa1f(x)? Compute limxaf(x). 


Evaluate the following one sided limit: 

limx2+x3x24 


Evaluate the following one sided limit: 

limx2x3x24 


Evaluate the following one sided limit:

limx0+13x


Evaluate the following one sided limit:

limx8+2xx+8


Evaluate the following one sided limit:

limxπ2tanx


Evaluate the following one sided limit:

limx02cotx 


Evaluate the following one sided limit:

limx01+cosecx


Find:  limx2[x] 


Find: limx52[x]

 


Find: limx1[x]


Prove that limxa+[x]=[a] R. Also, prove that limx1[x]=0.


Show that limx2x[x]limx2+x[x].


Find limx3+x[x].  Is it equal to limx3x[x].


Find limx5/2[x]. 


Show that limx0sin1xdoes not exist. 


Let f(x)={kcosxπ2x,wherexπ23,wherex=π2   and if limxπ2f(x)=f(π2) 


limx3(1x33x23x)

limx0cos3xcos5xx2

limnnsin(π4n)cos(π4n)

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.