English

Let A1, A2, ..., an Be Fixed Real Numbers Such that F(X) = (X − A1) (X − A2) ... (X − An) What is Lim X → a 1 F ( X ) ? Compute Lim X → a F ( X ) . - Mathematics

Advertisements
Advertisements

Question

Let a1a2, ..., an be fixed real numbers such that
f(x) = (x − a1) (x − a2) ... (x − an)
What is \[\lim_{x \to a_1} f\left( x \right)?\] Compute \[\lim_{x \to a} f\left( x \right) .\] 

Solution

\[f\left( x \right) = \left( x - a_1 \right) \left( x - a_2 \right) . . . \left( x - a_n \right)\]
\[ \lim_{x \to a_1} f\left( x \right)\]
\[ = \lim_{x \to a_1} \left[ \left( x - a_1 \right) \left( x - a_2 \right) . . . \left( x - a_n \right) \right]\]
\[ = \left( a_1 - a_1 \right) \left( a_1 - a_2 \right) . . . \left( a_1 - a_n \right)\]
\[ = 0\]
\[ \lim_{x \to a} f\left( x \right)\]
\[ = \lim_{x \to a} \left( x - a_1 \right) \left( x - a_2 \right) . . . \left( x - a_n \right)\]
\[ = \left( a - a_1 \right) \left( a - a_2 \right) . . . \left( a - a_n \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: Limits - Exercise 29.1 [Page 11]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 29 Limits
Exercise 29.1 | Q 11 | Page 11

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find k so that \[\lim_{x \to 2} f\left( x \right)\] \[f\left( x \right) = \begin{cases}2x + 3, & x \leq 2 \\ x + k, & x > 2\end{cases} .\] 


Show that \[\lim_{x \to 0} \frac{1}{x}\] does not exist. 


Let f(x) be a function defined by \[f\left( x \right) = \begin{cases}\frac{3x}{\left| x \right| + 2x}, & x \neq 0 \\ 0, & x = 0\end{cases} .\] Show that \[\lim_{x \to 0} f\left( x \right)\] does not exist.

 

Let \[f\left( x \right) = \left\{ \begin{array}{l}x + 1, & if x \geq 0 \\ x - 1, & if x < 0\end{array} . \right.\]Prove that \[\lim_{x \to 0} f\left( x \right)\] does not exist.


Let \[f\left( x \right) = \begin{cases}x + 5, & if x > 0 \\ x - 4, & if x < 0\end{cases}\] \[\lim_{x \to 0} f\left( x \right)\]  does not exist. 


Find \[\lim_{x \to 3} f\left( x \right)\] where \[f\left( x \right) = \begin{cases}4, & if x > 3 \\ x + 1, & if x < 3\end{cases}\] 


If \[f\left( x \right) = \left\{ \begin{array}{l}2x + 3, & x \leq 0 \\ 3 \left( x + 1 \right), & x > 0\end{array} . \right.\] find \[\lim_{x \to 0} f\left( x \right)\] 


Evaluate \[\lim_{x \to 0} f\left( x \right)\]  where \[f\left( x \right) = \begin{cases}\frac{\left| x \right|}{x}, & x \neq 0 \\ 0, & x = 0\end{cases}\] 


Evaluate the following one sided limit: 

\[\lim_{x \to 2^+} \frac{x - 3}{x^2 - 4}\] 


Evaluate the following one sided limit: 

\[\lim_{x \to 2^-} \frac{x - 3}{x^2 - 4}\] 


Evaluate the following one sided limit:

\[\lim_{x \to 0^+} \frac{1}{3x}\]


Evaluate the following one sided limit:

\[\lim_{x \to - 8^+} \frac{2x}{x + 8}\]


Evaluate the following one sided limit:

\[\lim_{x \to 0^+} \frac{2}{x^{1/5}}\]


Evaluate the following one sided limit: 

\[\lim_{x \to \frac{\pi}{2}} \tan x\]


Evaluate the following one sided limit:

\[\lim_{x \to \frac{\pi}{2}} \tan x\]


Evaluate the following one sided limit:

\[\lim_{x \to 0^-} \frac{x^2 - 3x + 2}{x^3 - 2 x^2}\]


Find: \[ \lim_{x \to 1} \left[ x \right]\]


Show that \[\lim_{x \to 2^-} \frac{x}{\left[ x \right]} \neq \lim_{x \to 2^+} \frac{x}{\left[ x \right]} .\]


Find \[\lim_{x \to 5/2} \left[ x \right] .\] 


Show that \[\lim_{x \to 0} \sin \frac{1}{x}\]does not exist. 


Let \[f\left( x \right) = \begin{cases}\frac{k\cos x}{\pi - 2x}, & where x \neq \frac{\pi}{2} \\ 3, & where x = \frac{\pi}{2}\end{cases}\]   and if \[\lim_{x \to \frac{\pi}{2}} f\left( x \right) = f\left( \frac{\pi}{2} \right)\] 


\[\lim_{x \to 3} \left( \frac{1}{x - 3} - \frac{3}{x^2 - 3x} \right)\]

\[\lim_{x \to 0} \frac{\cos 3x - \cos 5x}{x^2}\]

\[\lim_{n \to \infty} n \sin \left( \frac{\pi}{4 n} \right) \cos \left( \frac{\pi}{4 n} \right)\]

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×