Advertisements
Advertisements
Question
Explain the processes of nuclear fission and nuclear fusion by using the plot of binding energy per nucleon (BE/A) versus the mass number A
Solution
A plot of binding energy per nucleon (BE/A) versus the mass number A
As we move from heavy nuclei region to the middle region of the plot, there is a gain in the overall binding energy and hence, in the release of energy. This indicates that energy can be released when a heavy nucleus breaks into roughly two equal fragments.This process is called nuclear fission.
When we move from lighter nuclei to heavier nuclei, there will be the gain in the overall binding energy and release of energy. This is called nuclear fusion
APPEARS IN
RELATED QUESTIONS
Calculate the energy in fusion reaction:
`""_1^2H+_1^2H->_2^3He+n`, where BE of `""_1^2H`23He=7.73MeV" data-mce-style="position: relative;">=2.2323He=7.73MeV MeV and of `""_2^3He=7.73 MeV`
Distinguish between nuclear fission and fusion. Show how in both these processes energy is released. Calculate the energy release in MeV in the deuterium-tritium fusion reaction :
`""_1^2H+_1^3H->_2^4He+n`
Using the data :
m(`""_1^2H`) = 2.014102 u
m(`""_1^3H`) = 3.016049 u
m(`""_2^4He`) = 4.002603 u
mn = 1.008665 u
1u = 931.5 MeV/c2
In a photon-electron collision ______.
(A) only total energy is conserved.
(B) only total momentum is conserved.
(C) both total energy and total momentum are conserved.
(D) both total momentum and total energy are not conserved
Write notes on Nuclear fission
Write one balanced equation to show Nuclear fusion
Free 238U nuclei kept in a train emit alpha particles. When the train is stationary and a uranium nucleus decays, a passenger measures that the separation between the alpha particle and the recoiling nucleus becomes x in time t after the decay. If a decay takes place when the train is moving at a uniform speed v, the distance between the alpha particle and the recoiling nucleus at a time t after the decay, as measured by the passenger will be
During a nuclear fission reaction,
Show that the minimum energy needed to separate a proton from a nucleus with Zprotons and N neutrons is `ΔE = (M_(Z-1,N) + M_B - M_(Z,N))c^2`
where MZ,N = mass of an atom with Z protons and N neutrons in the nucleus and MB = mass of a hydrogen atom. This energy is known as proton-separation energy.
Calculate the Q-values of the following fusion reactions :-
(a) `""_1^2H + ""_1^2H → ""_1^3H + ""_1^1H`
(b) `""_1^2H + ""_1^2H → ""_2^3H + n`
(c) `""_1^2H + ""_1^3H → _2^4H + n`.
Atomic masses are `m(""_1^2H) = 2.014102 "u", m(""_1^3H) = 3.016049 "u", m(""_2^3He) = 3.016029 "u", m(""_2^4He) = 4.002603 "u".`
(Use Mass of proton mp = 1.007276 u, Mass of `""_1^1"H"` atom = 1.007825 u, Mass of neutron mn = 1.008665 u, Mass of electron = 0.0005486 u ≈ 511 keV/c2,1 u = 931 MeV/c2.)
In our Nature, where is the nuclear fusion reaction taking place continuously?