Advertisements
Advertisements
Question
Explain why A spinning cricket ball in air does not follow a parabolic trajectory
Solution 1
A spinning cricket ball would have followed a parabolic trajectory has there been no air. But because of air the Magnus effect takes place. Due to the Magnus effect the spinning cricket ball deviates from its parabolic trajectory.
Solution 2
A spinning cricket ball has two simultaneous motions – rotatory and linear. These two types of motion oppose the effect of each other. This decreases the velocity of air flowing below the ball. Hence, the pressure on the upper side of the ball becomes lesser than that on the lower side. An upward force acts upon the ball. Therefore, the ball takes a curved path. It does not follow a parabolic path
APPEARS IN
RELATED QUESTIONS
Fill in the blanks using the word(s) from the list appended with each statement
For the model of a plane in a wind tunnel, turbulence occurs at a ... speed for turbulence for an actual plane (greater / smaller)
Explain why To keep a piece of paper horizontal, you should blow over, not under, it
In a test experiment on a model aeroplane in a wind tunnel, the flow speeds on the upper and lower surfaces of the wing are 70 m s–1and 63 m s–1 respectively. What is the lift on the wing if its area is 2.5 m2? Take the density of air to be 1.3 kg m–3.
Figures (a) and (b) refer to the steady flow of a (non-viscous) liquid. Which of the two figures is incorrect? Why?
In deriving Bernoulli’s equation, we equated the work done on the fluid in the tube to its change in the potential and kinetic energy. (a) What is the largest average velocity of blood flow in an artery of diameter 2 × 10–3 m if the flow must remain laminar? (b) Do the dissipative forces become more important as the fluid velocity increases? Discuss qualitatively.
Water is flowing through a long horizontal tube. Let PA and PB be the pressures at two points A and B of the tube.
Suppose the tube in the previous problem is kept vertical with A upward but the other conditions remain the same. the separation between the cross sections at A and B is 15/16 cm. Repeat parts (a), (b) and (c) of the previous problem. Take g = 10 m/s2.
In the widest part of the horizontal pipe, oil is flowing at a rate of 2 m/sec. The speed (in m/s) of the flow of oil in the narrow part of the tube if the pressure difference in the broad and narrow parts of the pipe is 0.25 ρoilg, is ______ m/s.
Calculate the velocity with which the liquid gushes out of the 4 cm2 outlet, if the liquid flowing in the tube is water and the liquid in the U tube has a specificity 12. The velocity of the liquid at point A is `sqrt20.2` m/s ______.
Explain the working of an atomizer.