Advertisements
Advertisements
Question
Factorise:
a3 - 27b3 + 2a2b - 6ab2
Sum
Solution
a3 - 27b3 + 2a2b - 6ab2
We know that,
a3 - b3 = (a - b)(a2 + ab + b2) ...(1)
a3 - 27b3 + 2a2b - 6ab2
= (a)3 - (3b)3 + 2ab(a - 3b)
= (a - 3b)[a2 + a × 3b + (3b)2] + 2ab(a - 3b) ...[From(1)]
= (a - 3b)[a2 + 3ab + 9b2] + 2ab(a - 3b)
= (a - 3b)[a2 + 3ab + 9b2 + 2ab]
= (a - 3b)[a2 + 5ab + 9b2]
shaalaa.com
Method of Factorisation : the Sum Or Difference of Two Cubes
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Factorise:
a3 - 27
Factorise : a6 + 27b3
Factorise : a3 - `27/a^3`
Factorise:
`(8"a"^3)/27 - "b"^3/8`
Factorise : a6 - b6
Factorise : 2x3 + 54y3 - 4x - 12y
Factorise : 1029 - 3x3
Show that : 353 + 273 is divisible by 62
Factorise : 8a3 - b3 - 4ax + 2bx
Evaluate :
`[ 5.67 xx 5.67 xx 5.67 + 4.33 xx 4.33 xx 4.33 ]/[5.67 xx 5.67 - 5.67 xx 4.33 + 4.33 xx 4.33]`