English

Father'S Age is Three Times the Sum of Age of His Two Children. After 5 Years His Age Will Be Twice the Sum of Ages of Two Children. Find the Age of Father. - Mathematics

Advertisements
Advertisements

Question

Father's age is three times the sum of age of his two children. After 5 years his age will be twice the sum of ages of two children. Find the age of father.

Definition

Solution

Let the present age of father be x years and the present ages of his two children’s be and zyears.

The present age of father is three times the sum of the ages of the two children’s. Thus, we have

`x=3(y+2)`

`⇒ y+z=x/5`

After 5 years, father’s age will be (x+5) years and the children’s age will be (y+5) and (z+5) years. Thus using the given information, we have

`x+5 =2 {(y+5)+(z+5)}`

`⇒ x+5 =2 (y+5+z+5)`

`⇒ x = 2(y+z)+20-5`

`⇒ x = 2 (y+z)+15`

So, we have two equations

`y+z =x/3`

`x=2(y+z)+15`

Here x, y and z are unknowns. We have to find the value of x.

Substituting the value of (y+z) from the first equation in the second equation, we have

By using cross-multiplication, we have

`x = (2x)/3+15`

`⇒ x=(2x)/3=15`

`⇒ x(1-2/3)=15`

`⇒ x/3=15`

`⇒ x= 15xx3`

`⇒ x =45`

Hence, the present age of father is 45 years.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Pair of Linear Equations in Two Variables - Exercise 3.9 [Page 92]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 3 Pair of Linear Equations in Two Variables
Exercise 3.9 | Q 8 | Page 92

RELATED QUESTIONS

Formulate the following problems as a pair of equations, and hence find their solutions:

Ritu can row downstream 20 km in 2 hours, and upstream 4 km in 2 hours. Find her speed of rowing in still water and the speed of the current


A train covered a certain distance at a uniform speed. If the train would have been 10 km/h faster, it would have taken 2 hours less than the scheduled time. And if the train were slower by 10 km/h; it would have taken 3 hours more than the scheduled time. Find the distance covered by the train.


Draw the graphs of the equations 5x − y = 5 and 3x − y = 3. Determine the coordinates of the vertices of the triangle formed by these lines and the y axis.


Solve the following pair of linear equations: px + qy = p − q, qx − py = p + q


In Fig. 1, ABCD is a rectangle. Find the value of x and y.


Find the values of following determinant.

`|(7/3,5/3), (3/2, 1/2)|`


The sum of digits of a two digit number is 13. If the number is subtracted from the one obtained by interchanging the digits, the result is 45. What is the number?


A two-digit number is 3 more than 4 times the sum of its digits. If 8 is added to the number, the digits are reversed. Find the number.


The numerator of a fraction is 4 less than the denominator. If the numerator is decreased by 2 and denominator is increased by 1, then the denominator is eight times the numerator. Find the fraction.


Let the numerator and denominator of the fraction be x and y respectively. Then the fraction is `x/y`

If 3 is added to the denominator and 2 is subtracted from the numerator, the fraction becomes `1/4`. Thus, we have

`(x-2)/(y+3)=1/4`

`⇒ 4(x-2)=y+3`

`⇒ 4x-8=y+3`

`⇒ 4x-y-11=0`

If 6 is added to the numerator and the denominator is multiplied by 3, the fraction becomes `2/3`. Thus, we have

`(x+6)/(3y)=2/3`

`⇒ 3(x+6)=6y`

`⇒ 3x +18 =6y`

`⇒ 3x-6y+18=0`

`⇒ 3(x-2y+6)=0`

`⇒ x-3y+6=0`

Here x and y are unknowns. We have to solve the above equations for x and y.

By using cross-multiplication, we have

`x/((-1)xx6-(-2)xx(-11))=(-y)/(4xx6-1xx(-11))=1/(4xx(-2)-1xx(-1))`

`⇒ x/(-6-22)=-y/(24+11)=1/(-8+1)`

`⇒ x/-28=-y/35=1/-7`

`⇒ x= 28/7,y=35/7`

`⇒ x= 4,y=5`

Hence, the fraction is`4/5`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×