English
Karnataka Board PUCPUC Science Class 11

Figure Following Shows a Light Rod of Length L Rigidly Attached to a Small Heavy Block at One End and a Hook at the Other End. the System is Released from Rest with the Rod in a Horizontal Position. - Physics

Advertisements
Advertisements

Question

Figure following shows a light rod of length l rigidly attached to a small heavy block at one end and a hook at the other end. The system is released from rest with the rod in a horizontal position. There is a fixed smooth ring at a depth h below the initial position of the hook and the hook gets into the ring as it reaches there. What should be the minimum value of h so that the block moves in a complete circle about the ring?

Numerical

Solution

Let v be the minimum velocity required to complete a circle about the ring. 

Applying the law of conservation of energy,

Total energy at point A = Total energy at point B

\[\text{ mgl } + \frac{1}{2}\text{ mv}^2 = \text{ mg(2l)} + 0\]
\[ \Rightarrow \text{ v } = \sqrt{2\text{ gl }}\]

Let the rod be released from a height h.
Total energy at A = Total energy at B

\[\text{ mgh } = \frac{1}{2}\text{ m } \nu^2 \]

\[\text{ mgh } = \frac{1}{2}\text{m} \left( 2 \text{ gl} \right)\]

So, h = l

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Work and Energy - Exercise [Page 136]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 8 Work and Energy
Exercise | Q 52 | Page 136

RELATED QUESTIONS

A body is initially at rest. It undergoes one-dimensional motion with constant acceleration. The power delivered to it at time t is proportional to ______.


A heavy stone is thrown from a cliff of height h with a speed v. The stoen will hit the ground with maximum speed if it is thrown 


You lift a suitcase from the floor and keep it on a table. The work done by you on the suitcase does not depend on

(a) the path taken by the suitcase
(b) the time taken by you in doing so
(c) the weight of the suitcase
(d) your weight


A block of mass m is attached to two unstretched springs of spring constants k1 and k2 as shown in the following figure. The block is displaced towards the right through a distance x and is released. Find the speed of the block as it passes through the mean position shown.


In the following figure shows two blocks A and B, each of mass of 320 g connected by a light string passing over a smooth light pulley. The horizontal surface on which the block Acan slide is smooth. Block A is attached to a spring of spring constant 40 N/m whose other end is fixed to a support 40 cm above the horizontal surface. Initially, the spring is vertical and unstretched when the system is released to move. Find the velocity of the block A at the instant it breaks off the surface below it. Take g = 10 m/s2.


A spring of negligible mass and force constant 5 Nm–1 is compressed by a distance x = 5 cm. A block of mass 200 g is free to leave the end of the spring. If the system is released, what will be the speed of the block when it leaves the spring?


A particle is released from height S from the surface of the Earth. At a certain height, its kinetic energy is three times its potential energy. The height from the surface of the earth and the speed of the particle at that instant are respectively ______


A body is falling freely under the action of gravity alone in vacuum. Which of the following quantities remain constant during the fall?


Two inclined frictionless tracks, one gradual and the other steep meet at A from where two stones are allowed to slide down from rest, one on each track as shown in figure.


Which of the following statement is correct?


In a shotput event an athlete throws the shotput of mass 10 kg with an initial speed of 1 ms–1 at 45° from a height 1.5 m above ground. Assuming air resistance to be negligible and acceleration due to gravity to be 10 ms–2, the kinetic energy of the shotput when it just reaches the ground will be ______.


Why is electrical power required at all when the elevator is descending? Why should there be a limit on the number of passengers in this case?


A bob of mass m suspended by a light string of length L is whirled into a vertical circle as shown in figure. What will be the trajectory of the particle if the string is cut at

  1. Point B?
  2. Point C? 
  3. Point X?


A baloon filled with helium rises against gravity increasing its potential energy. The speed of the baloon also increases as it rises. How do you reconcile this with the law of conservation of mechanical energy? You can neglect viscous drag of air and assume that density of air is constant.


A single conservative force acts on a body of mass 1 kg that moves along the x-axis. The potential energy U(x) is given by U (x) = 20 + (x - 2)2, where x is in meters. At x = 5.0 m the particle has a kinetic energy of 20 J, then the maximum kinetic energy of body is ______ J.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×