Advertisements
Advertisements
Question
Find all the zeroes of polynomial `(2x^4 – 11x^3 + 7x^2 + 13x – 7)`, it being given that two of its zeroes are `(3 + sqrt2) and (3 – sqrt2)`.
Solution
The given polynomial is f(x) = `2x^4 – 11x^3 + 7x^2 + 13x – 7.`
Since `(3 + sqrt2) and (3 – sqrt2)` are the zeroes of f(x) it follows that each one of `(x + 3 + sqrt2) and (x + 3 – sqrt2) `is a factor of f(x).
Consequently,` [(x – ( 3 + sqrt2)] [(x – (3 – sqrt2)] = [(x – 3) - sqrt2 ] [(x – 3) + sqrt2 ]`
=`[(x – 3)^2 – 2 ] = x^2 – 6x + 7,` which is a factor of f(x).
On dividing f(x) by `(x^2 – 6x + 7)`, we get:
f(x) = 0
⇒` 2x^4 – 11x^3 + 7x^2 + 13x – 7 = 0`
⇒ `(x^2 – 6x + 7) (2x2 + x – 7) = 0`
⇒` (x + 3 + sqrt2) (x + 3 – sqrt2) (2x – 1) (x + 1) = 0`
⇒ `x = –3 – sqrt2 or x = –3 + sqrt2 or x =1/2 or x = -1`
Hence, all the zeroes are `(–3 – sqrt2), (–3 + sqrt2),1/2 and -1.`
APPEARS IN
RELATED QUESTIONS
Find the zeroes of the quadratic polynomial `f(x) = 5x^2 ˗ 4 ˗ 8x` and verify the relationship between the zeroes and coefficients of the given polynomial.
One zero of the polynomial `3x^3+16x^2 +15x-18 is 2/3` . Find the other zeros of the polynomial.
If 3 is a zero of the polynomial `2x^2 + x + k`, find the value of k.
If -4 is a zero of the polynomial `x^2 – x – (2k + 2) is –4`, then find the value of k.
Write the zeros of the polynomial `f(x) = x^2 – x – 6`.
A quadratic polynomial, whose zeroes are -3 and 4, is ______.
A quadratic polynomial, whose zeores are -4 and -5, is ______.
If the graph of a polynomial intersects the x-axis at exactly two points, it need not be a quadratic polynomial.
The graph of y = f(x) is shown in the figure for some polynomial f(x). The number of zeroes of f(x) are ______.
If α and β are the zeroes of the polynomial x2 + x − 2, then find the value of `alpha/beta+beta/alpha`