English
Karnataka Board PUCPUC Science Class 11

Find the Angular Separation Between the Consecutive Bright Fringes in a Young'S Double Slit Experiment with Blue-green Light of Wavelength 500 Nm. the Separation Between the Slits is 2 ⋅ 0 × 10 − 3 M - Physics

Advertisements
Advertisements

Question

Find the angular separation between the consecutive bright fringes in a Young's double slit experiment with blue-green light of wavelength 500 nm. The separation between the slits is \[2 \cdot 0 \times  {10}^{- 3}m.\]

Sum

Solution

Given

Wavelength of the blue-green light,

\[\lambda = 500 \times  {10}^{- 9}   m\]

Separation between two slits,

\[d = 2 \times  {10}^{- 3}   m,\]

Let angular separation between the consecutive bright fringes be θ.

Using  \[\theta = \frac{\beta}{D} = \frac{\lambda D}{dD} = \frac{\lambda}{d},\] we get

\[          \theta = \frac{500 \times {10}^{- 9}}{2 \times {10}^{- 3}}\]

\[               = 250 \times  {10}^{- 6} \]

\[               = 25 \times  {10}^{- 5}\text{ radian or }0.014^\circ\]

Hence, the angular separation between the consecutive bright fringes is 0.014 degree.

shaalaa.com
  Is there an error in this question or solution?
Chapter 17: Light Waves - Exercise [Page 381]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 17 Light Waves
Exercise | Q 9 | Page 381

RELATED QUESTIONS

The fringes produced in diffraction pattern are of _______.

(A) equal width with same intensity

(B) unequal width with varying intensity

(C) equal intensity\

(D) equal width with varying intensity


Write two characteristics features distinguish the diffractions pattern from the interference fringes obtained in Young’s double slit experiment.


A beam of light consisting of two wavelengths, 800 nm and 600 nm is used to obtain the interference fringes in a Young's double slit experiment on a screen placed 1 · 4 m away. If the two slits are separated by 0·28 mm, calculate the least distance from the central bright maximum where the bright fringes of the two wavelengths coincide.


Two coherent sources of light having intensity ratio 81 : 1 produce interference fringes. Calculate the ratio of intensities at the maxima and minima in the interference pattern.


The slits in a Young's double slit experiment have equal width and the source is placed symmetrically with respect to the slits. The intensity at the central fringe is I0. If one of the slits is closed, the intensity at this point will be ____________ .


A Young's double slit experiment is performed with white light.

(a) The central fringe will be white.

(b) There will not be a completely dark fringe.

(c) The fringe next to the central will be red.

(d) The fringe next to the central will be violet.


In a Young's double slit experiment, two narrow vertical slits placed 0.800 mm apart are illuminated by the same source of yellow light of wavelength 589 nm. How far are the adjacent bright bands in the interference pattern observed on a screen 2.00 m away?


A source emitting light of wavelengths 480 nm and 600 nm is used in a double-slit interference experiment. The separation between the slits is 0.25 mm and the interference is observed on a screen placed at 150 cm from the slits. Find the linear separation between the first maximum (next to the central maximum) corresponding to the two wavelengths.


A mica strip and a polystyrene strip are fitted on the two slits of a double slit apparatus. The thickness of the strips is 0.50 mm and the separation between the slits is 0.12 cm. The refractive index of mica and polystyrene are 1.58 and 1.55, respectively, for the light of wavelength 590 nm which is used in the experiment. The interference is observed on a screen at a distance one metre away. (a) What would be the fringe-width? (b) At what distance from the centre will the first maximum be located?


In a Young's double slit experiment, \[\lambda = 500\text{ nm, d = 1.0 mm and D = 1.0 m.}\] Find the minimum distance from the central maximum for which the intensity is half of the maximum intensity.


What should be the path difference between two waves reaching a point for obtaining constructive interference in Young’s Double Slit experiment ?


A thin circular ring of mass M and radius R is rotating about its axis with a constant angular velocity ω. Two objects each of mass m are attached gently to the opposite ends of diameter of the ring. The ring will now rotate with an angular velocity:


A projectile can have the same range R for two angles of projection. If t1 and t2 be the times of flight in two cases, then what is the product of two times of flight?


Why is the diffraction of sound waves more evident in daily experience than that of light wave?


ASSERTION (A): In an interference pattern observed in Young's double slit experiment, if the separation (d) between coherent sources as well as the distance (D) of the screen from the coherent sources both are reduced to 1/3rd, then new fringe width remains the same.

REASON (R): Fringe width is proportional to (d/D).


Interference fringes are observed on a screen by illuminating two thin slits 1 mm apart with a light source (λ = 632.8 nm). The distance between the screen and the slits is 100 cm. If a bright fringe is observed on a screen at distance of 1.27 mm from the central bright fringe, then the path difference between the waves, which are reaching this point from the slits is close to :


Monochromatic green light of wavelength 5 × 10-7 m illuminates a pair of slits 1 mm apart. The separation of bright lines in the interference pattern formed on a screen 2 m away is ______.


In Young's double slit experiment the two slits are 0.6 mm distance apart. Interference pattern is observed on a screen at a distance 80 cm from the slits. The first dark fringe is observed on the screen directly opposite to one of the slits. The wavelength of light will be ______ nm.


In Young's double-slit experiment, the separation between the two slits is d and the distance of the screen from the slits is 1000 d. If the first minima fall at a distance d from the central maximum, obtain the relation between d and λ.


In an interference experiment, a third bright fringe is obtained at a point on the screen with a light of 700 nm. What should be the wavelength of the light source in order to obtain the fifth bright fringe at the same point?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×