हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

Find the Angular Separation Between the Consecutive Bright Fringes in a Young'S Double Slit Experiment with Blue-green Light of Wavelength 500 Nm. the Separation Between the Slits is 2 ⋅ 0 × 10 − 3 M - Physics

Advertisements
Advertisements

प्रश्न

Find the angular separation between the consecutive bright fringes in a Young's double slit experiment with blue-green light of wavelength 500 nm. The separation between the slits is \[2 \cdot 0 \times  {10}^{- 3}m.\]

योग

उत्तर

Given

Wavelength of the blue-green light,

\[\lambda = 500 \times  {10}^{- 9}   m\]

Separation between two slits,

\[d = 2 \times  {10}^{- 3}   m,\]

Let angular separation between the consecutive bright fringes be θ.

Using  \[\theta = \frac{\beta}{D} = \frac{\lambda D}{dD} = \frac{\lambda}{d},\] we get

\[          \theta = \frac{500 \times {10}^{- 9}}{2 \times {10}^{- 3}}\]

\[               = 250 \times  {10}^{- 6} \]

\[               = 25 \times  {10}^{- 5}\text{ radian or }0.014^\circ\]

Hence, the angular separation between the consecutive bright fringes is 0.014 degree.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Light Waves - Exercise [पृष्ठ ३८१]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 17 Light Waves
Exercise | Q 9 | पृष्ठ ३८१

संबंधित प्रश्न

Find the intensity at a point on a screen in Young's double slit experiment where the interfering waves have a path difference of (i) λ/6, and (ii) λ/2. 


 What is the effect on the interference fringes to a Young’s double slit experiment when

(i) the separation between the two slits is decreased?

(ii) the width of a source slit is increased?

(iii) the monochromatic source is replaced by a source of white light?

Justify your answer in each case.


Can we perform Young's double slit experiment with sound waves? To get a reasonable "fringe pattern", what should be the order of separation between the slits? How can the bright fringes and the dark fringes be detected in this case?


The slits in a Young's double slit experiment have equal width and the source is placed symmetrically with respect to the slits. The intensity at the central fringe is I0. If one of the slits is closed, the intensity at this point will be ____________ .


The separation between the consecutive dark fringes in a Young's double slit experiment is 1.0 mm. The screen is placed at a distance of 2.5m from the slits and the separation between the slits is 1.0 mm. Calculate the wavelength of light used for the experiment.


A mica strip and a polystyrene strip are fitted on the two slits of a double slit apparatus. The thickness of the strips is 0.50 mm and the separation between the slits is 0.12 cm. The refractive index of mica and polystyrene are 1.58 and 1.55, respectively, for the light of wavelength 590 nm which is used in the experiment. The interference is observed on a screen at a distance one metre away. (a) What would be the fringe-width? (b) At what distance from the centre will the first maximum be located?


Two transparent slabs having equal thickness but different refractive indices µ1 and µ2are pasted side by side to form a composite slab. This slab is placed just after the double slit in a Young's experiment so that the light from one slit goes through one material and the light from the other slit goes through the other material. What should be the minimum thickness of the slab so that there is a minimum at the point P0 which is equidistant from the slits?


A parallel beam of monochromatic light is used in a Young's double slit experiment. The slits are separated by a distance d and the screen is placed parallel to the plane of the slits. Slow that if the incident beam makes an angle \[\theta =  \sin^{- 1}   \left( \frac{\lambda}{2d} \right)\] with the normal to the plane of the slits, there will be a dark fringe at the centre P0 of the pattern.


In a Young's double slit experiment, \[\lambda = 500\text{ nm, d = 1.0 mm and D = 1.0 m.}\] Find the minimum distance from the central maximum for which the intensity is half of the maximum intensity.


How is the fringe width of an interference pattern in Young's double-slit experiment affected if the two slits are brought closer to each other?


In Young’s double-slit experiment, using monochromatic light, fringes are obtained on a screen placed at some distance from the slits. If the screen is moved by 5 x 10-2 m towards the slits, the change in the fringe width is 3 x 10-5 m. If the distance between the two slits is 10-3 m, calculate the wavelength of the light used.


In Young's double slit experiment the slits are 0.589 mm apart and the interference is observed on a screen placed at a distance of 100 cm from the slits. It is found that the 9th bright fringe is at a distance of 7.5 mm from the dark fringe which is second from the center of the fringe pattern. Find the wavelength of the light used.


Young's double slit experiment is made in a liquid. The 10th bright fringe lies in liquid where 6th dark fringe lies in vacuum. The refractive index of the liquid is approximately


In a Young’s double slit experiment, the source is white light. One of the holes is covered by a red filter and another by a blue filter. In this case ______.


Consider a two-slit interference arrangement (Figure) such that the distance of the screen from the slits is half the distance between the slits. Obtain the value of D in terms of λ such that the first minima on the screen falls at a distance D from the centre O.


How will the interference pattern in Young's double-slit experiment be affected if the phase difference between the light waves emanating from the two slits S1 and S2 changes from 0 to π and remains constant?


A beam of light consisting of two wavelengths 600 nm and 500 nm is used in Young's double slit experiment. The silt separation is 1.0 mm and the screen is kept 0.60 m away from the plane of the slits. Calculate:

  1. the distance of the second bright fringe from the central maximum for wavelength 500 nm, and
  2. the least distance from the central maximum where the bright fringes due to both wavelengths coincide.

In Young’s double slit experiment, how is interference pattern affected when the following changes are made:

  1. Slits are brought closer to each other.
  2. Screen is moved away from the slits.
  3. Red coloured light is replaced with blue coloured light.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×