English
Karnataka Board PUCPUC Science Class 11

Find the Dimensional Formula of ε0. - Physics

Advertisements
Advertisements

Question

Find the dimensional formula of ε0.

Short Note

Solution

By Coulomb's Law,  F=14πϵ0q1q2r2

ϵ0=14πFq1q2r2
Using [F] = [MLT−2]
[r] = [M0L1T0]
[q] = [M0L0T1A1], we get
0] = [M−1L−3T4A2]
shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Electric Field and Potential - Exercises [Page 121]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 7 Electric Field and Potential
Exercises | Q 1 | Page 121

RELATED QUESTIONS

Two equal balls with equal positive charge 'q' coulombs are suspended by two insulating strings of equal length. What would be the effect on the force when a plastic sheet is inserted between the two?


Four charges +q, −q, +q and −q are to be arranged respectively at the four corners of a square ABCD of side 'a'.
(a) Find the work required to put together this arrangement.
(b) A charge q0 is brought to the centre of the square, the four charges being held fixed. How much extra work is needed to do this ?


Two charges 2.0 × 10−6 C and 1.0 × 10−6 C are placed at a separation of 10 cm. Where should a third charge be placed, such that it experiences no net force due to these charges?


Two insulating small spheres are rubbed against each other and placed 1 cm apart. If they attract each other with a force of 0.1 N, how many electrons were transferred from one sphere to the other during rubbing?


Two particles A and B, each carrying a charge Q, are held fixed with a separation dbetween them. A particle C of mass m and charge q is kept at the middle point of the line AB. If it is displaced through a distance x perpendicular to AB, what would be the electric force experienced by it?  


Two particles A and B possessing charges of +2.00 × 10−6 C and of −4.00 × 10−6 C, respectively, are held fixed at a separation of 20.0 cm. Locate the points (s) on the line AB, where (a) the electric field is zero (b) the electric potential is zero.  


A water particle of mass 10.0 mg and with a charge of 1.50 × 10−6 C stays suspended in a room. What is the magnitude of electric field in the room? What is its direction ? 


Three identical charges, each with a value of 1.0 × 10−8 C, are placed at the corners of an equilateral triangle of side 20 cm. Find the electric field and potential at the centre of the triangle. 


Two equal charges, 2.0 × 10−7 C each, are held fixed at a separation of 20 cm. A third charge of equal magnitude is placed midway between the two charges. It is now moved to a point 20 cm from both the charges. How much work is done by the electric field during the process?


Write down Coulomb’s law in vector form and mention what each term represents.


Write a short note on superposition principle.


Explain in detail Coulomb’s law and its various aspects.


The force between two charges 0.06 m apart is 5 N. If each charge is moved towards the other by 0.01 m, then the force between them will become ____________.


The electric force acting between two point charges kept at a certain distance in vacuum is 16 N. If the same two charges are kept at the same distance in a medium of dielectric constant 8, the electric force acting between them is ____________ N.


The unit of charge is ______.


The S.I unit of electric permittivity is


There is another useful system of units, besides the SI/mks A system, called the cgs (centimeter-gram-second) system. In this system Coloumb’s law is given by

F = Qqr2r^

where the distance r is measured in cm (= 10–2 m), F in dynes (= 10–5 N) and the charges in electrostatic units (es units), where 1 es unit of charge = 1[3]×10-9C

The number [3] actually arises from the speed of light in vaccum which is now taken to be exactly given by c = 2.99792458 × 108 m/s. An approximate value of c then is c = [3] × 108 m/s.

(i) Show that the coloumb law in cgs units yields

1 esu of charge = 1 (dyne)1/2 cm.

Obtain the dimensions of units of charge in terms of mass M, length L and time T. Show that it is given in terms of fractional powers of M and L.

(ii) Write 1 esu of charge = x C, where x is a dimensionless number. Show that this gives

14π0=10-9x2Nm2C2

With x=1[3]×10-9, we have 14π0=[3]2×109Nm2C2

or, 14π0=(2.99792458)2×109Nm2C2 (exactly).


Four charges equal to - Q are placed at the four a corners of a square and charge q is at its centre. If the system is in equilibrium, the value of q is ______.


What is meant by the statement: "Relative permittivity of water is 81"?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.