Advertisements
Advertisements
Question
Find t5 if a = 3 आणि d = −3
Solution
tn = a + (n – 1)d
∴ t5 = 3 + (5 – 1)(– 3)
= 3 + 4(– 3)
= 3 – 12
= – 9
RELATED QUESTIONS
If the 9th term of an A.P. is zero, then prove that 29th term is double of 19th term.
Find the sum of the following arithmetic series:
`7 + 10 1/2 + 14 + ....... + 84`
Find the sum of the following arithmetic series:
(-5)+(-8)+(-11)+...+(-230)
Decide whether the following sequence is an A.P., if so find the 20th term of the progression:
–12, –5, 2, 9, 16, 23, 30, ..............
Find the 19th term of the following A.P.:
7, 13, 19, 25, ...
Find the 27th term of the following A.P.
9, 4, –1, –6, –11,...
Select the correct alternative and write it.
If a share is at premium, then -
How many multiples of 4 lie between 10 and 205?
Choose the correct alternative answer for the following sub-question
If the third term and fifth term of an A.P. are 13 and 25 respectively, find its 7th term
Decide whether the given sequence 24, 17, 10, 3, ...... is an A.P.? If yes find its common term (tn)
How many two-digit numbers are divisible by 5?
Activity :- Two-digit numbers divisible by 5 are, 10, 15, 20, ......, 95.
Here, d = 5, therefore this sequence is an A.P.
Here, a = 10, d = 5, tn = 95, n = ?
tn = a + (n − 1) `square`
`square` = 10 + (n – 1) × 5
`square` = (n – 1) × 5
`square` = (n – 1)
Therefore n = `square`
There are `square` two-digit numbers divisible by 5
Decide whether 301 is term of given sequence 5, 11, 17, 23, .....
Activity :- Here, d = `square`, therefore this sequence is an A.P.
a = 5, d = `square`
Let nth term of this A.P. be 301
tn = a + (n – 1) `square`
301 = 5 + (n – 1) × `square`
301 = 6n – 1
n = `302/6` = `square`
But n is not positive integer.
Therefore, 301 is `square` the term of sequence 5, 11, 17, 23, ......
12, 16, 20, 24, ...... Find 25th term of this A.P.
If tn = 2n – 5 is the nth term of an A.P., then find its first five terms
Write the next two terms of the A.P.: `sqrt(27), sqrt(48), sqrt(75)`......