Advertisements
Advertisements
Question
Find the median of 26, 33, 41, 18, 30, 22, 36, 45 and 24
Solution
Arranging in ascending order, we get
18, 22, 24, 26, 30, 33, 36, 41, 45
Here, number of terms(n) = 9 which is odd
∴ Median `= ("n + 1")/2`th term
`= (9 + 1)/2` = 5th term = 30
APPEARS IN
RELATED QUESTIONS
Marks obtained by 40 students in a short assessment is given below, where a and b are two missing data.
Marks | 5 | 6 | 7 | 8 | 9 |
Number of Students | 6 | a | 16 | 13 | b |
If the mean of the distribution is 7.2, find a and b.
Find the mode and the median of the following frequency distribution:
x | 10 | 11 | 12 | 13 | 14 | 15 |
f | 1 | 4 | 7 | 5 | 9 | 3 |
Using step-deviation method, calculate the mean marks of the following distribution.
C.I. | 50 – 55 | 55 – 60 | 60 – 65 | 65 – 70 | 70 – 75 | 75 – 80 | 80 – 85 | 85 – 90 |
Frequency | 5 | 20 | 10 | 10 | 9 | 6 | 12 | 8 |
Draw an ogive for the data given below and from the graph determine:
- the median marks
- the number of students who obtained more than 75% marks
Marks | No. of students |
0 – 9 | 5 |
10 – 19 | 9 |
20 – 29 | 16 |
30 – 39 | 22 |
40 – 49 | 26 |
50 – 59 | 18 |
60 – 69 | 11 |
70 – 79 | 6 |
80 – 89 | 4 |
90 – 99 | 3 |
Find the mean of first 10 prime numbers.
If the mean of 8 , 14 , 20 , x and 12 is 13, find x.
The heights of 9 persons are 142 cm, 158 cm, 152 cm, 143 cm, 139 cm, 144 cm, 146 cm, 148 cm and 151 cm. Find the mean height.
Find the mean of the following frequency distribution by the short cut method :
Class | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
Frequency | 9 | 12 | 15 | 10 | 14 |
Find the median of:
241, 243, 347, 350, 327, 299, 261, 292, 271, 258 and 257
If the extreme observations on both the ends of a data arranged in ascending order are removed, the median gets affected.