Advertisements
Advertisements
Question
Find the number of diagonals of an n-sided polygon. In particular, find the number of diagonals when n = 15
Solution
There are n vertices in the polygon of n-sides.
If we join any two vertices, we get either side or the diagonal of the polygon.
Two vertices can be joined in nC2 ways.
∴ total number of sides and diagonals = nC2
But there are n sides in the polygon.
∴ total number of the diagonals = nC2 – n
n = 15 sides
∴ the number of diagonal that can be drawn
= 15C2 – 15
=`(15!)/(2!13!) - 15`
= `(15 xx 14 xx 13!)/(2 xx 13!) - 15`
= `(15 xx 14)/2 - 15`
= 105 – 15
= 90
APPEARS IN
RELATED QUESTIONS
Find the value of 15C4
Find the value of `""^80"C"_2`
Find the value of `""^20"C"_16 - ""^19"C"_16`
Find n if `""^"n""C"_("n" - 3)` = 84
Find n and r if `""^"n""C"_("r" - 1): ""^"n""C"_"r": ""^"n""C"_("r" + 1)` = 20:35:42
If `""^"n""P"_"r" = 1814400` and `""^"n""C"_"r"` = 45, find r.
If `""^"n""C"_("r" - 1)` = 6435, `""^"n""C"_"r"` = 5005, `""^"n""C"_("r" + 1)` = 3003, find `""^"r""C"_5`.
Find the number of ways of selecting a team of 3 boys and 2 girls from 6 boys and 4 girls.
Find the number of triangles formed by joining 12 points if no three points are collinear,
Find n, if `""^23"C"_(3"n") = ""^23"C"_(2"n" + 3)`
Find n, if `""^(2"n")"C"_("r" - 1) = ""^(2"n")"C"_("r" + 1)`
Find n, if `""^"n""C"_("n" - 2)` = 15
Find the differences between the largest values in the following: `""^13"C"_r "and" ""^8"C"_r`
Find n if 2nC3 : nC2 = 52 : 3
Find the number of ways of drawing 9 balls from a bag that has 6 red balls, 8 green balls, and 7 blue balls so that 3 balls of every colour are drawn
After a meeting, every participant shakes hands with every other participants. If the number of handshakes is 66, find the number of participants in the meeting.
If 20 points are marked on a circle, how many chords can be drawn?
Find the number of diagonals of an n-sided polygon. In particular, find the number of diagonals when n = 10
Find the number of diagonals of an n-sided polygon. In particular, find the number of diagonals when n = 12
Find the number of triangles formed by joining 12 points if no three points are collinear
Find the number of triangles formed by joining 12 points if four points are collinear
A word has 8 consonants and 3 vowels. How many distinct words can be formed if 4 consonants and 2 vowels are chosen?
Find n if 21C6n = `""^21"C"_(("n"^2 + 5))`
Find n if nCn–2 = 15
Find r if 11C4 + 11C5 + 12C6 + 13C7 = 14Cr
A committee of 10 persons is to be formed from a group of 10 women and 8 men. How many possible committees will have at least 5 women? How many possible committees will have men in majority?
Select the correct answer from the given alternatives.
A question paper has two parts, A and B, each containing 10 questions. If a student has to choose 8 from part A and 5 from part B, In how many ways can he choose the questions?
Select the correct answer from the given alternatives.
The number of arrangements of the letters of the word BANANA in which two N's do not appear adjacently
Answer the following:
A student finds 7 books of his interest but can borrow only three books. He wants to borrow the Chemistry part-II book only if Chemistry Part-I can also be borrowed. Find the number of ways he can choose three books that he wants to borrow.
Answer the following:
Nine friends decide to go for a picnic in two groups. One group decides to go by car and the other group decides to go by train. Find the number of different ways of doing so if there must be at least 3 friends in each group.
Answer the following:
Four parallel lines intersect another set of five parallel lines. Find the number of distinct parallelograms formed
If `1/(8!) + 1/(7!) = x/(9!)`, than x is equal to ______.
If 'n' is positive integer and three consecutive coefficient in the expansion of (1 + x)n are in the ratio 6 : 33 : 110, then n is equal to ______.
What is the probability of getting a “FULL HOUSE” in five cards drawn in a poker game from a standard pack of 52-cards?
[A FULL HOUSE consists of 3 cards of the same kind (eg, 3 Kings) and 2 cards of another kind (eg, 2 Aces)]
Out of 7 consonants and 4 vowels, the number of words (not necessarily meaningful) that can be made, each consisting of 3 consonants and 2 vowels, is ______.