Advertisements
Advertisements
Question
Find n if 21C6n = `""^21"C"_(("n"^2 + 5))`
Solution
21C6n = `""^21"C"_(("n"^2 + 5))`
If nCx = nCy, then either x = y or x = n – y
∴ 6n = n2 + 5 or 6n = 21 – (n2 + 5)
∴ n2 – 6n + 5 = 0 or 6n = 21 – n2 – 5
∴ n2 – 6n + 5 = 0 or n2 + 6n – 16 = 0
If n2 – 6n + 5 = 0 then (n – 1)(n – 5) = 0
∴ n = 1 or n = 5
If n = 5 then
n2 + 5 = 30 > 21
∴ n ≠ 5
∴ n = 1
If n2 + 6n – 16 = 0 then (n + 8)(n – 2) = 0
n = – 8 or n = 2
n ≠ – 8
∴ n = 2
APPEARS IN
RELATED QUESTIONS
Find the value of 15C4
Find the value of `""^20"C"_16 - ""^19"C"_16`
Find n if `""^"n""C"_("n" - 3)` = 84
Find r if `""^14"C"_(2"r"): ""^10"C"_(2"r" - 4)` = 143:10
Find n and r if `""^"n""C"_("r" - 1): ""^"n""C"_"r": ""^"n""C"_("r" + 1)` = 20:35:42
After a meeting, every participant shakes hands with every other participants. If the number of handshakes is 66, find the number of participants in the meeting.
Find the number of diagonals of an n-shaded polygon. In particular, find the number of diagonals when: n = 10
Find the number of diagonals of an n-shaded polygon. In particular, find the number of diagonals when: n = 12
Find the number of triangles formed by joining 12 points if no three points are collinear,
A word has 8 consonants and 3 vowels. How many distinct words can be formed if 4 consonants and 12 vowels are chosen?
Find n, if `""^21"C"_(6"n") = ""^21"C"_(("n"^2 + 5)`
Find n, if `""^(2"n")"C"_("r" - 1) = ""^(2"n")"C"_("r" + 1)`
Find r if `""^11"C"_4 + ""^11"C"_5 + ""^12"C"_6 + ""^13"C"_7 = ""^14"C"_"r"`
A committee of 10 persons is to be formed from a group of 10 women and 8 men. How many possible committees will have at least 5 women? How many possible committees will have men in the majority?
A question paper has two sections. section I has 5 questions and section II has 6 questions. A student must answer at least two questions from each section among 6 questions he answers. How many different choices does the student have in choosing questions?
Find r if 14C2r : 10C2r–4 = 143 : 10
If nCr–1 = 6435, nCr = 5005, nCr+1 = 3003, find rC5
After a meeting, every participant shakes hands with every other participants. If the number of handshakes is 66, find the number of participants in the meeting.
If 20 points are marked on a circle, how many chords can be drawn?
Find the number of diagonals of an n-sided polygon. In particular, find the number of diagonals when n = 10
Find the number of diagonals of an n-sided polygon. In particular, find the number of diagonals when n = 15
Find the number of diagonals of an n-sided polygon. In particular, find the number of diagonals when n = 8
Ten points are plotted on a plane. Find the number of straight lines obtained by joining these points if no three points are collinear
Find the number of triangles formed by joining 12 points if four points are collinear
Find n if 2nCr–1 = 2nCr+1
Find n if nCn–2 = 15
Find r if 11C4 + 11C5 + 12C6 + 13C7 = 14Cr
A committee of 10 persons is to be formed from a group of 10 women and 8 men. How many possible committees will have at least 5 women? How many possible committees will have men in majority?
A question paper has two sections. section I has 5 questions and section II has 6 questions. A student must answer at least two question from each section among 6 questions he answers. How many different choices does the student have in choosing questions?
There are 3 wicketkeepers and 5 bowlers among 22 cricket players. A team of 11 players is to be selected so that there is exactly one wicketkeeper and at least 4 bowlers in the team. How many different teams can be formed?
Five students are selected from 11. How many ways can these students be selected if two specified students are selected?
Answer the following:
A student finds 7 books of his interest but can borrow only three books. He wants to borrow the Chemistry part-II book only if Chemistry Part-I can also be borrowed. Find the number of ways he can choose three books that he wants to borrow.
Answer the following:
30 objects are to be divided in three groups containing 7, 10, 13 objects. Find the number of distinct ways for doing so.
A student passes an examination if he secures a minimum in each of the 7 subjects. Find the number of ways a student can fail.
Answer the following:
Four parallel lines intersect another set of five parallel lines. Find the number of distinct parallelograms formed
The maximum value of z = 9x + 11y subject to 3x + 2y ≤ 12, 2x + 3y ≤ 12, x ≥ 0, y ≥ 0 is _______.
Out of 7 consonants and 4 vowels, the number of words (not necessarily meaningful) that can be made, each consisting of 3 consonants and 2 vowels, is ______.