Advertisements
Advertisements
Question
Answer the following:
30 objects are to be divided in three groups containing 7, 10, 13 objects. Find the number of distinct ways for doing so.
Solution
Required number = 30C7 × 23C10 × 13C13
= `(30!)/(23!7!) xx (23!)/(10!13!) xx1`
= `(30!)/(7!10!13!)`
APPEARS IN
RELATED QUESTIONS
Find the value of `""^20"C"_16 - ""^19"C"_16`
Find r if `""^14"C"_(2"r"): ""^10"C"_(2"r" - 4)` = 143:10
If `""^"n""P"_"r" = 1814400` and `""^"n""C"_"r"` = 45, find r.
If 20 points are marked on a circle, how many chords can be drawn?
Find the number of diagonals of an n-shaded polygon. In particular, find the number of diagonals when: n = 15
Find the number of triangles formed by joining 12 points if four points are collinear.
Find n, if `""^23"C"_(3"n") = ""^23"C"_(2"n" + 3)`
find the value of `sum_("r" = 1)^4 ""^(21 - "r")"C"_4 + ""^17"C"_5`
A committee of 10 persons is to be formed from a group of 10 women and 8 men. How many possible committees will have at least 5 women? How many possible committees will have men in the majority?
Find n if nCn–3 = 84
Find r if 14C2r : 10C2r–4 = 143 : 10
Find n and r if nPr = 720 and nCn–r = 120
After a meeting, every participant shakes hands with every other participants. If the number of handshakes is 66, find the number of participants in the meeting.
If 20 points are marked on a circle, how many chords can be drawn?
Find the number of diagonals of an n-sided polygon. In particular, find the number of diagonals when n = 15
Ten points are plotted on a plane. Find the number of straight lines obtained by joining these points if no three points are collinear
Ten points are plotted on a plane. Find the number of straight lines obtained by joining these points if four points are collinear
Find the number of triangles formed by joining 12 points if four points are collinear
A word has 8 consonants and 3 vowels. How many distinct words can be formed if 4 consonants and 2 vowels are chosen?
Find n if nC8 = nC12
Find n if 23C3n = 23C2n+3
Find r if 11C4 + 11C5 + 12C6 + 13C7 = 14Cr
Find the differences between the greatest values in the following:
14Cr and 12Cr
Find the differences between the greatest values in the following:
13Cr and 8Cr
A committee of 10 persons is to be formed from a group of 10 women and 8 men. How many possible committees will have at least 5 women? How many possible committees will have men in majority?
A question paper has two sections. section I has 5 questions and section II has 6 questions. A student must answer at least two question from each section among 6 questions he answers. How many different choices does the student have in choosing questions?
There are 3 wicketkeepers and 5 bowlers among 22 cricket players. A team of 11 players is to be selected so that there is exactly one wicketkeeper and at least 4 bowlers in the team. How many different teams can be formed?
Select the correct answer from the given alternatives.
A question paper has two parts, A and B, each containing 10 questions. If a student has to choose 8 from part A and 5 from part B, In how many ways can he choose the questions?
Answer the following:
Ten students are to be selected for a project from a class of 30 students. There are 4 students who want to be together either in the project or not in the project. Find the number of possible selections
A student passes an examination if he secures a minimum in each of the 7 subjects. Find the number of ways a student can fail.
Answer the following:
Nine friends decide to go for a picnic in two groups. One group decides to go by car and the other group decides to go by train. Find the number of different ways of doing so if there must be at least 3 friends in each group.
Answer the following:
There are 4 doctors and 8 lawyers in a panel. Find the number of ways for selecting a team of 6 if at least one doctor must be in the team
The maximum value of z = 9x + 11y subject to 3x + 2y ≤ 12, 2x + 3y ≤ 12, x ≥ 0, y ≥ 0 is _______.
In how many ways can a group of 5 boys and 6 girls be formed out of 10 boys and 11 girls?
If 'n' is positive integer and three consecutive coefficient in the expansion of (1 + x)n are in the ratio 6 : 33 : 110, then n is equal to ______.