Advertisements
Advertisements
Question
A question paper has two sections. section I has 5 questions and section II has 6 questions. A student must answer at least two question from each section among 6 questions he answers. How many different choices does the student have in choosing questions?
Solution
There are 11 questions, out of which 5 questions are from section I and 6 questions are from section II.
The student has to select 6 questions taking at least 2 questions from each section.
Consider the following table:
Case I | Case II | Case III | |
No. of questions | Sec I (2Q) Sec II (4Q) |
Sec I (3Q) Sec II (3Q) |
Sec I (4Q) Sec II (2Q) |
Number of ways | 5C2 × 6C4 = 10 × 15 = 150 |
5C3 × 6C3 = 10 × 20 = 200 |
5C4 × 6C2 = 5 × 15 = 75 |
∴ Number of choices = 150 + 200 + 75 = 425
∴ In 425 ways students can select 6 questions, taking at least 2 questions from each section.
APPEARS IN
RELATED QUESTIONS
Find the value of 15C4
Find the value of `""^80"C"_2`
Find the value of `""^15"C"_4 + ""^15"C"_5`
Find n if `""^"n""C"_("n" - 3)` = 84
Find r if `""^14"C"_(2"r"): ""^10"C"_(2"r" - 4)` = 143:10
If `""^"n""P"_"r" = 1814400` and `""^"n""C"_"r"` = 45, find r.
If `""^"n""C"_("r" - 1)` = 6435, `""^"n""C"_"r"` = 5005, `""^"n""C"_("r" + 1)` = 3003, find `""^"r""C"_5`.
Find the number of ways of selecting a team of 3 boys and 2 girls from 6 boys and 4 girls.
If 20 points are marked on a circle, how many chords can be drawn?
Find the number of diagonals of an n-shaded polygon. In particular, find the number of diagonals when: n = 12
Ten points are plotted on a plane. Find the number of straight lines obtained by joining these points if no three points are collinear.
Find x if `""^"n""P"_"r" = "x" ""^"n""C"_"r"`
Find r if `""^11"C"_4 + ""^11"C"_5 + ""^12"C"_6 + ""^13"C"_7 = ""^14"C"_"r"`
Find the differences between the largest values in the following: `""^14"C"_r "and" ""^12"C"_r`
Find the differences between the largest values in the following: `""^15"C"_r "and" ""^11"C"_r`
A committee of 10 persons is to be formed from a group of 10 women and 8 men. How many possible committees will have at least 5 women? How many possible committees will have men in the majority?
Find n and r if nPr = 720 and nCn–r = 120
If nCr–1 = 6435, nCr = 5005, nCr+1 = 3003, find rC5
Find the number of ways of drawing 9 balls from a bag that has 6 red balls, 8 green balls, and 7 blue balls so that 3 balls of every colour are drawn
After a meeting, every participant shakes hands with every other participants. If the number of handshakes is 66, find the number of participants in the meeting.
Find the number of diagonals of an n-sided polygon. In particular, find the number of diagonals when n = 10
There are 20 straight lines in a plane so that no two lines are parallel and no three lines are concurrent. Determine the number of points of intersection
Ten points are plotted on a plane. Find the number of straight lines obtained by joining these points if no three points are collinear
Ten points are plotted on a plane. Find the number of straight lines obtained by joining these points if four points are collinear
A word has 8 consonants and 3 vowels. How many distinct words can be formed if 4 consonants and 2 vowels are chosen?
Find n if 2nCr–1 = 2nCr+1
Find r if 11C4 + 11C5 + 12C6 + 13C7 = 14Cr
Find the differences between the greatest values in the following:
13Cr and 8Cr
In how many ways can a boy invite his 5 friends to a party so that at least three join the party?
A student passes an examination if he secures a minimum in each of the 7 subjects. Find the number of ways a student can fail.
Answer the following:
Find the number of ways of dividing 20 objects in three groups of sizes 8, 7 and 5
If `1/(8!) + 1/(7!) = x/(9!)`, than x is equal to ______.
In how many ways can a group of 5 boys and 6 girls be formed out of 10 boys and 11 girls?