Advertisements
Advertisements
Question
Ten points are plotted on a plane. Find the number of straight lines obtained by joining these points if four points are collinear
Solution
There are 10 points on a plane.
When 4 of them are collinear
∴ Number of lines passing through these points if 4 points are collinear
= 10C2 – 4C2 + 1
= `45 - (4!)/(2!2!) + 1`
= `45 - (4 xx 3 xx 2!)/(2 xx 2!) + 1`
= 45 – 6 + 1
= 40
APPEARS IN
RELATED QUESTIONS
Find the value of 15C4
Find the value of `""^20"C"_16 - ""^19"C"_16`
Find the number of ways of selecting a team of 3 boys and 2 girls from 6 boys and 4 girls.
After a meeting, every participant shakes hands with every other participants. If the number of handshakes is 66, find the number of participants in the meeting.
If 20 points are marked on a circle, how many chords can be drawn?
Ten points are plotted on a plane. Find the number of straight lines obtained by joining these points if four points are collinear.
Find the number of triangles formed by joining 12 points if four points are collinear.
A word has 8 consonants and 3 vowels. How many distinct words can be formed if 4 consonants and 12 vowels are chosen?
Find n, if `""^23"C"_(3"n") = ""^23"C"_(2"n" + 3)`
Find n, if `""^(2"n")"C"_("r" - 1) = ""^(2"n")"C"_("r" + 1)`
find the value of `sum_("r" = 1)^4 ""^(21 - "r")"C"_4 + ""^17"C"_5`
Find the differences between the largest values in the following: `""^15"C"_r "and" ""^11"C"_r`
Nine friends decide to go for a picnic in two groups. One group decides to go by car and the other group decides to go by train. Find the number of different ways of doing so if there must be at least 3 friends in each group.
Find n if 2nC3 : nC2 = 52 : 3
Find n and r if nPr = 720 and nCn–r = 120
If nCr–1 = 6435, nCr = 5005, nCr+1 = 3003, find rC5
After a meeting, every participant shakes hands with every other participants. If the number of handshakes is 66, find the number of participants in the meeting.
A word has 8 consonants and 3 vowels. How many distinct words can be formed if 4 consonants and 2 vowels are chosen?
Find n if 23C3n = 23C2n+3
Find n if 21C6n = `""^21"C"_(("n"^2 + 5))`
Find the differences between the greatest values in the following:
14Cr and 12Cr
In how many ways can a boy invite his 5 friends to a party so that at least three join the party?
A group consists of 9 men and 6 women. A team of 6 is to be selected. How many of possible selections will have at least 3 women?
Select the correct answer from the given alternatives.
A question paper has two parts, A and B, each containing 10 questions. If a student has to choose 8 from part A and 5 from part B, In how many ways can he choose the questions?
Select the correct answer from the given alternatives.
The number of ways in which 5 male and 2 female members of a committee can be seated around a round table so that the two females are not seated together is
Answer the following:
Ten students are to be selected for a project from a class of 30 students. There are 4 students who want to be together either in the project or not in the project. Find the number of possible selections
Answer the following:
30 objects are to be divided in three groups containing 7, 10, 13 objects. Find the number of distinct ways for doing so.
Answer the following:
Find the number of ways of dividing 20 objects in three groups of sizes 8, 7 and 5
What is the probability of getting a “FULL HOUSE” in five cards drawn in a poker game from a standard pack of 52-cards?
[A FULL HOUSE consists of 3 cards of the same kind (eg, 3 Kings) and 2 cards of another kind (eg, 2 Aces)]
Out of 7 consonants and 4 vowels, the number of words (not necessarily meaningful) that can be made, each consisting of 3 consonants and 2 vowels, is ______.