Advertisements
Advertisements
Question
Ten points are plotted on a plane. Find the number of straight lines obtained by joining these points if four points are collinear.
Solution
To draw a line, two points are needed.
There are 10 points in a plane such that four points are collinear.
If no three of the given 10 points are collinear,
we will get 10C2 lines. But 4 points are collinear.
So, we will not get 4C2 lines from these points. Instead,
we get only one line containing the 4 points.
∴ Number of straight lines formed
= `""^10"C"_2 - ""^4"C"_2+1`
= `(10 xx 9)/2 + (4 xx 3)/2 + 1`
= 45 – 6 + 1
= 40
40 straight lines are obtained if four points are collinear.
APPEARS IN
RELATED QUESTIONS
Find the value of `""^20"C"_16 - ""^19"C"_16`
Find r if `""^14"C"_(2"r"): ""^10"C"_(2"r" - 4)` = 143:10
Find the number of triangles formed by joining 12 points if no three points are collinear,
Find n, if `""^23"C"_(3"n") = ""^23"C"_(2"n" + 3)`
Find r if `""^11"C"_4 + ""^11"C"_5 + ""^12"C"_6 + ""^13"C"_7 = ""^14"C"_"r"`
In how many ways can a boy invite his 5 friends to a party so that at least three join the party?
Find the number of diagonals of an n-sided polygon. In particular, find the number of diagonals when n = 8
Find the number of triangles formed by joining 12 points if no three points are collinear
Find the number of triangles formed by joining 12 points if four points are collinear
Find n if nC8 = nC12
Find n if 21C6n = `""^21"C"_(("n"^2 + 5))`
Find r if 11C4 + 11C5 + 12C6 + 13C7 = 14Cr
Find the differences between the greatest values in the following:
14Cr and 12Cr
In how many ways can a boy invite his 5 friends to a party so that at least three join the party?
A committee of 10 persons is to be formed from a group of 10 women and 8 men. How many possible committees will have at least 5 women? How many possible committees will have men in majority?
Select the correct answer from the given alternatives.
The number of arrangements of the letters of the word BANANA in which two N's do not appear adjacently
Answer the following:
A student finds 7 books of his interest but can borrow only three books. He wants to borrow the Chemistry part-II book only if Chemistry Part-I can also be borrowed. Find the number of ways he can choose three books that he wants to borrow.
The maximum value of z = 9x + 11y subject to 3x + 2y ≤ 12, 2x + 3y ≤ 12, x ≥ 0, y ≥ 0 is _______.