Advertisements
Advertisements
Question
Ten points are plotted on a plane. Find the number of straight lines obtained by joining these points if no three points are collinear.
Solution
To draw a line, two points are needed.
There are 10 points in a plane such that no three of them are collinear.
Hence, the number of lines formed 10C2
= `(10!)/((10 - 2)!2!)`
= `(10!)/(2!8!)`
= `(10 xx 9xx8!)/(2xx1xx8!)`
= 5 × 9
= 45
45 straight lines are obtained if no three points are collinear.
APPEARS IN
RELATED QUESTIONS
Find the value of 15C4
Find the number of diagonals of an n-shaded polygon. In particular, find the number of diagonals when: n = 10
Find the number of diagonals of an n-shaded polygon. In particular, find the number of diagonals when: n = 15
Find the number of triangles formed by joining 12 points if no three points are collinear,
A word has 8 consonants and 3 vowels. How many distinct words can be formed if 4 consonants and 12 vowels are chosen?
Find n if `""^"n""C"_8 = ""^"n""C"_12`
Find n and r if nCr–1 : nCr : nCr+1 = 20 : 35 : 42
If nPr = 1814400 and nCr = 45, find n+4Cr+3
Find the number of ways of drawing 9 balls from a bag that has 6 red balls, 8 green balls, and 7 blue balls so that 3 balls of every colour are drawn
Find the number of diagonals of an n-sided polygon. In particular, find the number of diagonals when n = 15
There are 20 straight lines in a plane so that no two lines are parallel and no three lines are concurrent. Determine the number of points of intersection
Ten points are plotted on a plane. Find the number of straight lines obtained by joining these points if no three points are collinear
Find the number of triangles formed by joining 12 points if no three points are collinear
A word has 8 consonants and 3 vowels. How many distinct words can be formed if 4 consonants and 2 vowels are chosen?
Find the value of `sum_("r" = 1)^4 ""^((21 - "r"))"C"_4`
A question paper has two sections. section I has 5 questions and section II has 6 questions. A student must answer at least two question from each section among 6 questions he answers. How many different choices does the student have in choosing questions?
Five students are selected from 11. How many ways can these students be selected if two specified students are selected?
Select the correct answer from the given alternatives.
The number of ways in which 5 male and 2 female members of a committee can be seated around a round table so that the two females are not seated together is
Answer the following:
A student finds 7 books of his interest but can borrow only three books. He wants to borrow the Chemistry part-II book only if Chemistry Part-I can also be borrowed. Find the number of ways he can choose three books that he wants to borrow.
Answer the following:
Nine friends decide to go for a picnic in two groups. One group decides to go by car and the other group decides to go by train. Find the number of different ways of doing so if there must be at least 3 friends in each group.